Back to Search Start Over

Precise Onboard Real-Time Orbit Determination with a Low-Cost Single-Frequency GPS/BDS Receiver.

Authors :
Gong, Xuewen
Guo, Lei
Wang, Fuhong
Zhang, Wanwei
Sang, Jizhang
Ge, Maorong
Schuh, Harald
Source :
Remote Sensing. Jun2019, Vol. 11 Issue 11, p1391-1391. 1p.
Publication Year :
2019

Abstract

The low-cost single-frequency GNSS receiver is one of the most economical and affordable tools for the onboard real-time navigation of numerous remote sensing small/micro satellites. We concentrate on the algorithm and experiments of onboard real-time orbit determination (RTOD) based on a single-frequency GPS/BDS receiver. Through various experiments of processing the real single-frequency GPS/BDS measurements from the Yaogan-30 (YG30) series and FengYun-3C (FY3C) satellites of China, some critical aspects of the onboard RTOD are investigated, such as the optimal force models setting, the effect of different measurements, and the impact of GPS/BDS fusion. The results demonstrate that a gravity model truncated to 55 × 55 order/degree for YG30 and 45 × 45 for FY3C and compensated with an optimal stochastic modeling of empirical accelerations, which minimize the onboard computational load and only result in a slight loss of orbit accuracy, is sufficient to obtain high-precision real-time orbit results. Under the optimal force models, the real-time orbit accuracy of 0.4–0.7 m for position and 0.4–0.7 mm/s for velocity is achievable with the carrier-phase-based solution, while an inferior real-time orbit accuracy of 0.8–1.6 m for position and 0.9–1.7 mm/s for velocity is achieved with the pseudo-range-based solution. Furthermore, although the GPS/BDS fusion only makes little change to the orbit accuracy, it increases the number of visible GNSS satellites significantly, and thus enhances the geometric distribution of GNSS satellites that help suppress the local orbit errors and improves the reliability and availability of the onboard RTOD, especially in some anomalous arcs where only a few GPS satellites are trackable. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
11
Issue :
11
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
136945134
Full Text :
https://doi.org/10.3390/rs11111391