Back to Search
Start Over
Ambiguous loci of mutually nearest and mutually furthest points in Banach spaces
- Source :
-
Nonlinear Analysis . Aug2004, Vol. 58 Issue 3/4, p367-377. 11p. - Publication Year :
- 2004
-
Abstract
- Let <f>X</f> be a real separable strictly convex Banach space and <f>G</f> a nonempty closed subset of <f>X</f>. Let <f>K(X)</f> (resp. <f>Kb(X)</f>) denote the family of all nonempty boundedly compact (resp. compact) convex subsets of <f>X</f> endowed with the <f>Hρ</f>-topology (resp. the Hausdorff distance), <f>KG(X)</f> (resp. <f>KGb(X)</f>) the closure of the set <f>{A∈K(X): A∩G=}</f> (resp. <f>{A∈Kb(X): A∩G=}</f>), and <f>V(G)</f> (resp. <f>Vb(G)</f>) the family of <f>A∈KG(X)</f> (resp. <f>A∈KGb(X)</f>) such that the minimization problem <f>min(A,G)</f> fails to be well-posed. It is proved that for most (in the sense of the Baire category) closed subsets (resp. bounded closed subsets) <f>G</f> of <f>X</f>, <f>V(G)</f> (resp. <f>Vb(G)</f>) is everywhere uncountable in <f>KG(X)</f> (resp. <f>KGb(X)</f>). A similar result for the mutually furthest point problem is also given. [Copyright &y& Elsevier]
- Subjects :
- *BANACH spaces
*GENERALIZED spaces
*TOPOLOGY
*POLYHEDRA
Subjects
Details
- Language :
- English
- ISSN :
- 0362546X
- Volume :
- 58
- Issue :
- 3/4
- Database :
- Academic Search Index
- Journal :
- Nonlinear Analysis
- Publication Type :
- Academic Journal
- Accession number :
- 13702149
- Full Text :
- https://doi.org/10.1016/j.na.2004.04.008