Back to Search Start Over

About Distributed Simulation-based Optimization of Forming Processes using a Grid Architecture.

Authors :
Grauner, Manfred
Barth, Thomas
Ghosh, S.
Castro, J.C.
Lee, J.K.
Source :
AIP Conference Proceedings. 2004, Vol. 712 Issue 1, p2097-2102. 6p.
Publication Year :
2004

Abstract

Permanently increasing complexity of products and their manufacturing processes combined with a shorter “time-to-market” leads to more and more use of simulation and optimization software systems for product design. Finding a “good” design of a product implies the solution of computationally expensive optimization problems based on the results of simulation. Due to the computational load caused by the solution of these problems, the requirements on the Information&Telecommunication (IT) infrastructure of an enterprise or research facility are shifting from stand-alone resources towards the integration of software and hardware resources in a distributed environment for high-performance computing. Resources can either comprise software systems, hardware systems, or communication networks. An appropriate IT-infrastructure must provide the means to integrate all these resources and enable their use even across a network to cope with requirements from geographically distributed scenarios, e.g. in computational engineering and/or collaborative engineering. Integrating expert’s knowledge into the optimization process is inevitable in order to reduce the complexity caused by the number of design variables and the high dimensionality of the design space. Hence, utilization of knowledge-based systems must be supported by providing data management facilities as a basis for knowledge extraction from product data. In this paper, the focus is put on a distributed problem solving environment (PSE) capable of providing access to a variety of necessary resources and services. A distributed approach integrating simulation and optimization on a network of workstations and cluster systems is presented. For geometry generation the CAD-system CATIA is used which is coupled with the FEM-simulation system INDEED for simulation of sheet-metal forming processes and the problem solving environment OpTiX for distributed optimization. © 2004 American Institute of Physics [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0094243X
Volume :
712
Issue :
1
Database :
Academic Search Index
Journal :
AIP Conference Proceedings
Publication Type :
Conference
Accession number :
13720655
Full Text :
https://doi.org/10.1063/1.1766844