Back to Search Start Over

From micro to nano: Polyamide thin film on microfiltration ceramic tubular membranes for nanofiltration.

Authors :
Chong, Jeng Yi
Wang, Rong
Source :
Journal of Membrane Science. Oct2019, Vol. 587, p117161-117161. 1p.
Publication Year :
2019

Abstract

Interfacial polymerization is an effective technique to synthesize high performance polyamide thin film membranes. However, it is still very challenging to apply this technique on ceramic hollow fibres or tubular membranes, especially when the substrate pore size is in the microfiltration range. In this study, we demonstrated that thin polyamide layer can be synthesized directly on microfiltration ceramic tubular membranes with a surface pore size of 0.1–0.2 μm via interfacial polymerization without an intermediate layer. A thin polyamide layer with a thickness 30–40 nm was coated on the inner surface of the ceramic substrate by circulating the monomers of branched polyethyleneimine (PEI), piperazine (PIP), and trimesoyl chloride (TMC) through the membrane lumen. The thin film layer showed good integration with the ceramic substrate and could withstand high pressure of at least 10 bar. The mechanical property of the polyamide layer was examined using AFM and the modulus was measured. The thin film composite membranes demonstrated excellent nanofiltration performance with a pure water permeability of 16–18 LMH bar−1 and a molecular weight cut-off of ∼250 Da. The membranes also showed good salt rejections (>90%) to CaCl 2 , MgCl 2 and MgSO 4 , and still maintained high rejections of MgCl 2 and sucrose at elevated temperature of 80 °C. The use of highly inert ceramic substrates has enabled the application of polyamide membranes under more challenging conditions. Image 1 • PEI-based polyamide thin film was synthesized on microfiltration ceramic tubular membranes without an intermediate layer. • The membranes demonstrated excellent nanofiltration performance with a PWP of 16–18 LMH bar−1 and a MWCO of ∼250 Da. • The membranes also showed good divalent salt rejections for CaCl 2 , MgCl 2 and MgSO 4. • The rejections of MgCl 2 and sucrose remained high at elevated temperature of 80 °C. • The mechanical property of the polyamide film was studied using the AFM pinpoint mode and the modulus was measured. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03767388
Volume :
587
Database :
Academic Search Index
Journal :
Journal of Membrane Science
Publication Type :
Academic Journal
Accession number :
137292036
Full Text :
https://doi.org/10.1016/j.memsci.2019.06.001