Back to Search Start Over

Fuzzy Adaptive Control for Nonlinear Suspension Systems Based on a Bioinspired Reference Model With Deliberately Designed Nonlinear Damping.

Authors :
Li, Jingying
Jing, Xingjian
Li, Zhengchao
Huang, Xianlin
Source :
IEEE Transactions on Industrial Electronics. Nov2019, Vol. 66 Issue 11, p8713-8723. 11p.
Publication Year :
2019

Abstract

This paper proposes a bioinspired reference model based fuzzy adaptive tracking control for active suspension systems. A general bioinspired nonlinear structure, which can present ideal nonlinear quasi-zero stiffness for vibration isolation, is adopted as tracking reference model. Fuzzy logic systems are used to approximate unknown nonlinear terms in nonlinear suspension systems. Particularly, a nonlinear damping is designed to improve damping characteristics of the bioinspired reference model. With beneficial nonlinear stiffness and improved nonlinear damping of the bioinspired reference model, the proposed fuzzy adaptive controller can effectively suppress vibration of suspension systems with less actuator force and much improved ride comfort, thus energy saving performance can be achieved. Finally, a quarter-vehicle active suspension system with considering payload uncertainties, general disturbance, and actuator saturation is provided for evaluating the validity and superiority of the bioinspired nonlinear dynamics based fuzzy adaptive control approach proposed in this paper. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02780046
Volume :
66
Issue :
11
Database :
Academic Search Index
Journal :
IEEE Transactions on Industrial Electronics
Publication Type :
Academic Journal
Accession number :
137379959
Full Text :
https://doi.org/10.1109/TIE.2018.2884219