Back to Search Start Over

Caspase-1 inhibitor exerts brain-protective effects against sepsis-associated encephalopathy and cognitive impairments in a mouse model of sepsis.

Authors :
Xu, Xi-e
Liu, Lu
Wang, Yu-chang
Wang, Chun-tao
Zheng, Qiang
Liu, Qin-xin
Li, Zhan-fei
Bai, Xiang-jun
Liu, Xing-hua
Source :
Brain, Behavior & Immunity. Aug2019, Vol. 80, p859-870. 12p.
Publication Year :
2019

Abstract

• Sepsis-associated encephalopathy impairs cognitive functions and inhibits synaptic plasticity. • Caspase-1 inhibitor treatment ameliorates cognitive dysfunction and protects brain ultrastructure in septic mice. • Caspase-1 inhibitor treatment mitigated inflammatory cytokines robust and diminished microglia activation in septic mice. Sepsis-associated encephalopathy (SAE) manifested clinically in acute and long-term cognitive impairments and associated with increased morbidity and mortality worldwide. The potential pathological changes of SAE are complex and remain to be elucidated. Pyroptosis, a novel programmed cell death, is executed by caspase-1-cleaved GSDMD N-terminal (GSDMD-NT) and we investigated it in peripheral blood immunocytes of septic patients previously. Here, a caspase-1 inhibitor VX765 was treated with CLP-induced septic mice. Novel object recognition test indicated that VX765 treatment reversed cognitive dysfunction in septic mice. Elevated plus maze, tail suspension test and open field test revealed that depressive-like behaviors of septic mice were relieved. Inhibited caspase-1 suppressed the expressions of GSDMD and its cleavage form GSDMD-NT, and reduced pyroptosis in brain at day 1 and day 7 after sepsis. Meantime, inhibited caspase-1 mitigated the expressions of IL-1β, MCP-1 and TNF-α in serum and brain, diminished microglia activation in septic mice, and reduced sepsis-induced brain-blood barrier disruption and ultrastructure damages in brain as well. Inhibited caspase-1 protected the synapse plasticity and preserved long-term potential, which may be the possible mechanism of cognitive functions protective effects of septic mice. In conclusion, caspase-1 inhibition exerts brain-protective effects against SAE and cognitive impairments in a mouse model of sepsis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08891591
Volume :
80
Database :
Academic Search Index
Journal :
Brain, Behavior & Immunity
Publication Type :
Academic Journal
Accession number :
137644622
Full Text :
https://doi.org/10.1016/j.bbi.2019.05.038