Back to Search Start Over

Dexmedetomidine-induced cardioprotection is mediated by inhibition of high mobility group box-1 and the cholinergic anti-inflammatory pathway in myocardial ischemia-reperfusion injury.

Authors :
Zhang, Juan
Xia, Fan
Zhao, Haifeng
Peng, Ke
Liu, Huayue
Meng, Xiaowen
Chen, Chen
Ji, Fuhai
Source :
PLoS ONE. 7/25/2019, Vol. 14 Issue 7, p1-18. 18p.
Publication Year :
2019

Abstract

Objectives: Dexmedetomidine (DEX) is a selective α2-adrenoceptor agonist that has anti-inflammatory and cardioprotective effects in myocardial ischemia/reperfusion (I/R) injury. The present study aimed to investigate the underlying mechanism by which DEX protects against myocardial I/R. Methods: Sprague Dawley rats were subjected to either sham operation or myocardial I/R, which was induced by ligating the left anterior descending coronary artery for 30 min followed by reperfusion for 120 min. Rats were treated with either DEX or saline prior to surgery. We measured heart infarct size, serum cardiac Troponin I (cTnI), cardiac High mobility group box-1 (HMGB1) expression, myocardial apoptosis and cytokine production of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Besides, we evaluated the heart function at 4 weeks post-reperfusion by echocardiography. Unilateral vagotomy or inhibition of the α7 nicotinic acetylcholine receptor (α7nAChR) with methyllycaconitine (MLA) was applied to investigate whether DEX-induced cardioprotection is mediated via the cholinergic anti-inflammatory pathway. Cardiac-selective overexpression of HMGB1 was administered to further confirm if HMGB1 is a key anti-inflammatory target during DEX-induced cardioprotection. Results: DEX pretreatment significantly attenuated I/R-induced cardiac damage, as evidenced by decreases in short-term injury indicators including myocardial infarct size, cTnI release, myocardial apoptosis, cardiac HMGB1 expression, IL-6 and TNF-α production, as well as improvement on long-term cardiac function at 4 weeks post-reperfusion. These effects were partially reversed by either unilateral vagotomy or methyllycaconitine treatment. Besides, cardiac HMGB1-overexpression nearly abolished DEX-induced cardioprotection. Conclusions: DEX pretreatment protects against myocardial I/R by inhibiting cardiac HMGB1 production and activating the cholinergic anti-inflammatory pathway. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
14
Issue :
7
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
137700596
Full Text :
https://doi.org/10.1371/journal.pone.0218726