Back to Search Start Over

Iterative Sequential Action Control for Stable, Model-Based Control of Nonlinear Systems.

Authors :
Tzorakoleftherakis, Emmanouil
Murphey, Todd D.
Source :
IEEE Transactions on Automatic Control. Aug2019, Vol. 64 Issue 8, p3170-3183. 14p.
Publication Year :
2019

Abstract

This paper presents iterative sequential action control (iSAC), a receding horizon approach for control of nonlinear systems. The iSAC method has a closed-form open-loop solution, which is iteratively updated between time steps by introducing constant control values applied for short duration. Application of a contractive constraint on the cost is shown to lead to closed-loop asymptotic stability under mild assumptions. The effect of asymptotically decaying disturbances on system trajectories is also examined. To demonstrate the applicability of iSAC, we employ a variety of systems and conditions, including a 13-dimensional quaternion-based quadrotor and NASA's Transition Region and Coronal Explorer (TRACE) spacecraft. Each system is tested in different scenarios, ranging from feasible and infeasible trajectory tracking to setpoint stabilization, with or without the presence of external disturbances. Finally, limitations of this paper are discussed. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*TEST systems

Details

Language :
English
ISSN :
00189286
Volume :
64
Issue :
8
Database :
Academic Search Index
Journal :
IEEE Transactions on Automatic Control
Publication Type :
Periodical
Accession number :
137857842
Full Text :
https://doi.org/10.1109/TAC.2018.2885477