Back to Search Start Over

A gene based approach to test genetic association based on an optimally weighted combination of multiple traits.

Authors :
Zhang, Jianjun
Sha, Qiuying
Liu, Guanfu
Wang, Xuexia
Source :
PLoS ONE. 8/9/2019, Vol. 14 Issue 8, p1-17. 17p.
Publication Year :
2019

Abstract

There is increasing evidence showing that pleiotropy is a widespread phenomenon in complex diseases for which multiple correlated traits are often measured. Joint analysis of multiple traits could increase statistical power by aggregating multiple weak effects. Existing methods for multiple trait association tests usually study each of the multiple traits separately and then combine the univariate test statistics or combine p-values of the univariate tests for identifying disease associated genetic variants. However, ignoring correlation between phenotypes may cause power loss. Additionally, the genetic variants in one gene (including common and rare variants) are often viewed as a whole that affects the underlying disease since the basic functional unit of inheritance is a gene rather than a genetic variant. Thus, results from gene level association tests can be more readily integrated with downstream functional and pathogenic investigation, whereas many existing methods for multiple trait association tests only focus on testing a single common variant rather than a gene. In this article, we propose a statistical method by Testing an Optimally Weighted Combination of Multiple traits (TOW-CM) to test the association between multiple traits and multiple variants in a genomic region (a gene or pathway). We investigate the performance of the proposed method through extensive simulation studies. Our simulation studies show that the proposed method has correct type I error rates and is either the most powerful test or comparable with the most powerful tests. Additionally, we illustrate the usefulness of TOW-CM based on a COPDGene study. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
14
Issue :
8
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
138006908
Full Text :
https://doi.org/10.1371/journal.pone.0220914