Back to Search Start Over

Distinction between polymeric and ceramic membrane in AnMBR treating municipal wastewater: In terms of irremovable fouling.

Authors :
Liu, Ziwei
Zhu, Xianzheng
Liang, Peng
Zhang, Xiaoyuan
Kimura, Katsuki
Huang, Xia
Source :
Journal of Membrane Science. Oct2019, Vol. 588, pN.PAG-N.PAG. 1p.
Publication Year :
2019

Abstract

Polymeric flat-sheet membrane (FS) and ceramic flat-tubular membrane (CM) are the most widely-used membranes in anaerobic membrane bioreactor (AnMBR). However, fouling mechanism on FS and CM were rarely compared before and needed to be deeply illuminated. In this work, distinction of irremovable fouling formed on polyvinylidene fluoride FS and Al 2 O 3 CM in AnMBR treating municipal wastewater was studied. Lab-scale AnMBR operation showed that FS presented severer irremovable fouling and faster fouling rate. Foulants characterization revealed that irremovable fouling of FS was composed of more organics (FS = 0.91, CM = 0.35 g-TOC/m2-membrane) and biomass (FS = 47.3, CM = 8.65 × 1010 cell/m2-membrane), leading to gel layer loosely structured. Conversely, irremovable fouling of CM contained more inorganics (FS = 0.08, CM = 0.55 g/m2-membrane), facilitating dense gel layer with larger specific filtration resistance. Membrane cleaning tests found that gel layer on FS was efficiently removed by NaClO, while gel layer on CM was loosened by NaClO but destructed by citric acid. NaClO/NaOH both reduced resident bacteria, whereas increased the proportion of live cells. Irreversible fouling on FS involved more organics while more inorganics on CM. Irreversible biofouling could utilize citric acid as substrate for metabolism and proliferation. This study not only helps to probe fouling mechanism with different membrane materials, but also aids to develop differentiated effective cleaning strategy to corresponding membrane modules. Image 1 • Loosely structured gel layer on polymeric membrane contains more organics and biomass. • Dense and robust gel layer on ceramic membrane comprises more inorganics. • Gel layer on polymeric membrane is removed by NaClO degrading organics. • Gel layer on ceramic membrane is loosened by NaClO but destructed by citric acid. • NaClO reduces biomass on both membranes but increases the proportion of live cells. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03767388
Volume :
588
Database :
Academic Search Index
Journal :
Journal of Membrane Science
Publication Type :
Academic Journal
Accession number :
138128101
Full Text :
https://doi.org/10.1016/j.memsci.2019.117229