Back to Search Start Over

Numerical simulation of multi-pass parallel flow condensers with liquid-vapor separation.

Authors :
Hua, Nan
Xi, Huan
Xu, Rong Ji
Chen, Ying
Wang, Hua Sheng
Source :
International Journal of Heat & Mass Transfer. Oct2019, Vol. 142, pN.PAG-N.PAG. 1p.
Publication Year :
2019

Abstract

• A distributed model has been developed for multi-pass parallel flow condensers with condensate-vapor separation. • Mal-distribution of refrigerant flow rates in tubes of a flow pass is determined by the genetic algorithm. • Accurate locations of onset and completion of condensation are determined. • Predictions of heat transfer and pressure drop agree with experimental data within ±20%. Liquid-vapor separation is an advanced technology recently developed enabling significant further heat transfer enhancement for condensers. This paper reports a distributed parameter model, using the ε - NTU method, to numerically simulate heat transfer performance of multi-pass parallel flow condensers with liquid-vapor separation (referred to as MPFCs-LS). For achieving higher accurate results and lower computational time, a segment self-subdivision method is used to locate the positions of onset and completion of condensation. Furthermore genetic algorithm is adopted to determine the refrigerant flow rates through tubes in a flow pass. Relevant empirical correlations are selected for heat transfer and frictional pressure drop in different flow regimes during condensation in microfin tubes. The predictions of the model agree well with the experimental data within ±20%. The model and numerical methods developed in this work for MPFCs-LS are of important value in design and performance optimization of these new advanced condensers. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00179310
Volume :
142
Database :
Academic Search Index
Journal :
International Journal of Heat & Mass Transfer
Publication Type :
Academic Journal
Accession number :
138316900
Full Text :
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118469