Back to Search
Start Over
Translating antibiotic prescribing into antibiotic resistance in the environment: A hazard characterisation case study.
- Source :
-
PLoS ONE . 9/4/2019, Vol. 14 Issue 9, p1-23. 23p. - Publication Year :
- 2019
-
Abstract
- The environment receives antibiotics through a combination of direct application (e.g., aquaculture and fruit production), as well as indirect release through pharmaceutical manufacturing, sewage and animal manure. Antibiotic concentrations in many sewage-impacted rivers are thought to be sufficient to select for antibiotic resistance genes. Yet, because antibiotics are nearly always found associated with antibiotic-resistant faecal bacteria in wastewater, it is difficult to distinguish the selective role of effluent antibiotics within a ‘sea’ of gut-derived resistance genes. Here we examine the potential for macrolide and fluoroquinolone prescribing in England to select for resistance in the River Thames catchment, England. We show that 64% and 74% of the length of the modelled catchment is chronically exposed to putative resistance-selecting concentrations (PNEC) of macrolides and fluoroquinolones, respectively. Under current macrolide usage, 115 km of the modelled River Thames catchment (8% of total length) exceeds the PNEC by 5-fold. Similarly, under current fluoroquinolone usage, 223 km of the modelled River Thames catchment (16% of total length) exceeds the PNEC by 5-fold. Our results reveal that if reduced prescribing was the sole mitigating measure, that macrolide and fluoroquinolone prescribing would need to decline by 77% and 85%, respectively, to limit resistance selection in the catchment. Significant reductions in antibiotic prescribing are feasible, but innovation in sewage-treatment will be necessary for achieving substantially-reduced antibiotic loads and inactivation of DNA-pollution from resistant bacteria. Greater confidence is needed in current risk-based targets for antibiotics, particularly in mixtures, to better inform environmental risk assessments and mitigation. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19326203
- Volume :
- 14
- Issue :
- 9
- Database :
- Academic Search Index
- Journal :
- PLoS ONE
- Publication Type :
- Academic Journal
- Accession number :
- 138428235
- Full Text :
- https://doi.org/10.1371/journal.pone.0221568