Back to Search Start Over

Hydra: An Ensemble of Convolutional Neural Networks for Geospatial Land Classification.

Authors :
Minetto, Rodrigo
Pamplona Segundo, Mauricio
Sarkar, Sudeep
Source :
IEEE Transactions on Geoscience & Remote Sensing. Sep2019, Vol. 57 Issue 9, p6530-6541. 12p.
Publication Year :
2019

Abstract

In this paper, we describe Hydra, an ensemble of convolutional neural networks (CNNs) for geospatial land classification. The idea behind Hydra is to create an initial CNN that is coarsely optimized but provides a good starting pointing for further optimization, which will serve as the Hydra’s body. Then, the obtained weights are fine-tuned multiple times with different augmentation techniques, crop styles, and classes weights to form an ensemble of CNNs that represent the Hydra’s heads. By doing so, we prompt convergence to different endpoints, which is a desirable aspect for ensembles. With this framework, we were able to reduce the training time while maintaining the classification performance of the ensemble. We created ensembles for our experiments using two state-of-the-art CNN architectures, residual network (ResNet), and dense convolutional networks (DenseNet). We have demonstrated the application of our Hydra framework in two data sets, functional map of world (FMOW) and NWPU-RESISC45, achieving results comparable to the state-of-the-art for the former and the best-reported performance so far for the latter. Code and CNN models are available at https://github.com/maups/hydra-fmow. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01962892
Volume :
57
Issue :
9
Database :
Academic Search Index
Journal :
IEEE Transactions on Geoscience & Remote Sensing
Publication Type :
Academic Journal
Accession number :
138938084
Full Text :
https://doi.org/10.1109/TGRS.2019.2906883