Back to Search Start Over

Unsupervised learning for local structure detection in colloidal systems.

Authors :
Boattini, Emanuele
Dijkstra, Marjolein
Filion, Laura
Source :
Journal of Chemical Physics. 10/21/2019, Vol. 151 Issue 15, pN.PAG-N.PAG. 12p. 7 Color Photographs, 1 Diagram, 1 Chart, 6 Graphs.
Publication Year :
2019

Abstract

We introduce a simple, fast, and easy to implement unsupervised learning algorithm for detecting different local environments on a single-particle level in colloidal systems. In this algorithm, we use a vector of standard bond-orientational order parameters to describe the local environment of each particle. We then use a neural-network-based autoencoder combined with Gaussian mixture models in order to autonomously group together similar environments. We test the performance of the method on snapshots of a wide variety of colloidal systems obtained via computer simulations, ranging from simple isotropically interacting systems to binary mixtures, and even anisotropic hard cubes. Additionally, we look at a variety of common self-assembled situations such as fluid-crystal and crystal-crystal coexistences, grain boundaries, and nucleation. In all cases, we are able to identify the relevant local environments to a similar precision as "standard," manually tuned, and system-specific, order parameters. In addition to classifying such environments, we also use the trained autoencoder in order to determine the most relevant bond orientational order parameters in the systems analyzed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
151
Issue :
15
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
139227954
Full Text :
https://doi.org/10.1063/1.5118867