Back to Search
Start Over
Differentiation of renal angiomyolipoma without visible fat from renal cell carcinoma by machine learning based on whole-tumor computed tomography texture features.
- Source :
-
Acta Radiologica . Nov2019, Vol. 60 Issue 11, p1543-1552. 10p. - Publication Year :
- 2019
-
Abstract
- Background: Morphological findings showed poor accuracy in differentiating angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). Purpose: To determine the performance of a machine learning classifier in differentiating AMLwvf from different subtypes of RCC based on whole-tumor slices of CT images. Material and Methods: In this retrospective study, 171 pathologically proven renal masses were collected from a single institution. Texture features were extracted from whole-tumor images in three phases including the pre-contrast (PCP), corticomedullary (CMP), and nephrographic (NP) phases. A support vector machine with the recursive feature elimination method based on fivefold cross-validation (SVM-RFECV) with the synthetic minority oversampling technique (SMOTE) was utilized to establish classifiers for differentiating AMLwvf from all subtypes of RCC (all-RCC), clear cell RCC (ccRCC), and non-ccRCC. The performances of the classifiers based on three-phase and single-phase images were compared with each other and morphological interpretations. Results: A machine learning classifier achieved the best performance in differentiating AMLwvf from all-RCC, ccRCC, and non-ccRCC. The performance of the best machine learning classifier for differentiating AMLwvf from all-RCC (area under the curve [AUC] = 0.96) and ccRCC (AUC = 0.97) was higher than that for differentiating AMLwvf from non-ccRCC (AUC = 0.89); morphological interpretations achieved lower performance for differentiating AMLwvf from all-RCC (AUC = 0.67), ccRCC (AUC = 0.68), and non-ccRCC (AUC = 0.64). Conclusion: Machine learning can be a useful non-invasive technique for differentiating AMLwvf from all-RCC, ccRCC, and non-ccRCC, and it can be more accurate than morphological interpretation by radiologists. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 02841851
- Volume :
- 60
- Issue :
- 11
- Database :
- Academic Search Index
- Journal :
- Acta Radiologica
- Publication Type :
- Academic Journal
- Accession number :
- 139430768
- Full Text :
- https://doi.org/10.1177/0284185119830282