Back to Search Start Over

Demonstrating Quantum Coherence and Metrology that is Resilient to Transversal Noise.

Authors :
Chao Zhang
Bromley, Thomas R.
Yun-Feng Huang
Huan Cao
Wei-Min Lv
Bi-Heng Liu
Chuan-Feng Li
Guang-Can Guo
Cianciaruso, Marco
Adesso, Gerardo
Source :
Physical Review Letters. 11/1/2019, Vol. 123 Issue 18, p1-1. 1p.
Publication Year :
2019

Abstract

Quantum systems can be exploited for disruptive technologies but in practice quantum features are fragile due to noisy environments. Quantum coherence, a fundamental such feature, is a basis-dependent property that is known to exhibit a resilience to certain types of Markovian noise. Yet, it is still unclear whether this resilience can be relevant in practical tasks. Here, we experimentally investigate the resilient effect of quantum coherence in a photonic Greenberger-Horne-Zeilinger state under Markovian bit-flip noise, and explore its applications in a noisy metrology scenario. In particular, using up to six-qubit probes, we demonstrate that the standard quantum limit can be outperformed under a transversal noise strength of approximately equal magnitude to the signal, providing experimental evidence of metrological advantage even in the presence of uncorrelated Markovian noise. This work highlights the important role of passive control in noisy quantum hardware, which can act as a low-overhead complement to more traditional approaches such as quantum error correction, thus impacting on the deployment of quantum technologies in real-world settings. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00319007
Volume :
123
Issue :
18
Database :
Academic Search Index
Journal :
Physical Review Letters
Publication Type :
Academic Journal
Accession number :
139577502
Full Text :
https://doi.org/10.1103/PhysRevLett.123.180504