Back to Search Start Over

Developing Land Surface Directional Reflectance and Albedo Products from Geostationary GOES-R and Himawari Data: Theoretical Basis, Operational Implementation, and Validation.

Authors :
He, Tao
Zhang, Yi
Liang, Shunlin
Yu, Yunyue
Wang, Dongdong
Source :
Remote Sensing. Nov2019, Vol. 11 Issue 22, p2655. 1p.
Publication Year :
2019

Abstract

The new generation of geostationary satellite sensors is producing an unprecedented amount of Earth observations with high temporal, spatial and spectral resolutions, which enable us to detect and assess abrupt surface changes. In this study, we developed the land surface directional reflectance and albedo products from Geostationary Operational Environment Satellite-R (GOES-R) Advanced Baseline Imager (ABI) data using a method that was prototyped with the Moderate Resolution Imaging Spectroradiometer (MODIS) data in a previous study, and was also tested with data from the Advanced Himawari Imager (AHI) onboard Himawari-8. Surface reflectance is usually retrieved through atmospheric correction that requires the input of aerosol optical depth (AOD). We first estimated AOD and the surface bidirectional reflectance factor (BRF) model parameters simultaneously based on an atmospheric radiative transfer formulation with surface anisotropy, and then calculated the "blue-sky" surface broadband albedo and directional reflectance. This algorithm was implemented operationally by the National Oceanic and Atmospheric Administration (NOAA) to generate the GOES-R land surface albedo product suite with a daily updated clear-sky satellite observation database. The "operational" land surface albedo estimation from ABI and AHI data was validated against ground measurements at the SURFRAD sites and OzFlux sites and compared with the existing satellite products, including MODIS, Visible infrared Imaging Radiometer (VIIRS), and Global Land Surface Satellites (GLASS) albedo products, where good agreement was found with bias values of −0.001 (ABI) and 0.020 (AHI) and root-mean-square-errors (RMSEs) less than 0.065 for the hourly albedo estimation. Directional surface reflectance estimation, evaluated at more than 74 sites from the Aerosol Robotic Network (AERONET), was proven to be reliable as well, with an overall bias very close to zero and RMSEs within 0.042 (ABI) and 0.039 (AHI). Results show that the albedo and reflectance estimation can satisfy the NOAA accuracy requirements for operational climate and meteorological applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
11
Issue :
22
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
139788230
Full Text :
https://doi.org/10.3390/rs11222655