Back to Search Start Over

Expanding the application of photoelectro-Fenton treatment to urban wastewater using the Fe(III)-EDDS complex.

Authors :
Ye, Zhihong
Brillas, Enric
Centellas, Francesc
Cabot, Pere Lluís
Sirés, Ignasi
Source :
Water Research. Feb2020, Vol. 169, pN.PAG-N.PAG. 1p.
Publication Year :
2020

Abstract

This work reports the first investigation on the use of EDDS as chelating agent in photoelectro-Fenton (PEF) treatment of water at near-neutral pH. As a case study, the removal of the antidepressant fluoxetine was optimized, using an electrochemical cell composed of an IrO 2 -based anode an air-diffusion cathode for in-situ H 2 O 2 production. Electrolytic trials at constant current were made in ultrapure water with different electrolytes, as well as in urban wastewater (secondary effluent) at pH 7.2. PEF with Fe(III)–EDDS (1:1) complex as catalyst outperformed electro-Fenton and PEF processes with uncomplexed Fe(II) or Fe(III). This can be explained by: (i) the larger solubilization of iron ions during the trials, favoring the production of •OH from Fenton-like reactions between H 2 O 2 and Fe(II)–EDDS or Fe(III)–EDDS, and (ii) the occurrence of Fe(II) regeneration from Fe(III)–EDDS photoreduction, which was more efficient than conventional photo-Fenton reaction with uncomplexed Fe(III). The greatest drug concentration decays were achieved at low pH, using only 0.10 mM Fe(III)–EDDS, although complete removal in wastewater was feasible only with 0.20 mM Fe(III)–EDDS due to the greater formation of •OH. The effect of the applied current and anode nature was rather insignificant. A progressive destruction of the catalytic complex was unveiled, whereupon the mineralization mainly progressed thanks to the action of •OH adsorbed on the anode surface. Despite the incomplete mineralization using BDD as the anode, a remarkable toxicity decrease was determined. Fluoxetine degradation yielded F− and NO 3 − ions, along with several aromatic intermediates. These included two chloro-organics, as a result of the anodic oxidation of Cl− to active chlorine. A detailed mechanism for the Fe(III)–EDDS-catalyzed PEF treatment of fluoxetine in urban wastewater is finally proposed. Image 1 • Total fluoxetine removal at near-neutral pH by Fe(III)–EDDS-catalyzed PEF process. • Fe(III)–EDDS complex: great photoactivity to form Fe2+, and long iron solubilization. • 2 Degradation stages: •OH-mediated, followed by M(•OH)-mediated once EDDS disappeared • 11 Primary degradation by-products detected, including two chloro-organics. • Detailed mechanism for Fe(III)–EDDS-catalyzed PEF treatment in urban wastewater. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00431354
Volume :
169
Database :
Academic Search Index
Journal :
Water Research
Publication Type :
Academic Journal
Accession number :
140845515
Full Text :
https://doi.org/10.1016/j.watres.2019.115219