Back to Search Start Over

Life Cycle Costing and Eco-Efficiency Assessment of Fuel Production by Coprocessing Biomass in Crude Oil Refineries.

Authors :
Cruz, Pedro L.
Iribarren, Diego
Dufour, Javier
Source :
Energies (19961073). Dec2019, Vol. 12 Issue 24, p4664-4664. 1p. 1 Diagram, 6 Charts, 4 Graphs.
Publication Year :
2019

Abstract

Biobased liquid fuels are becoming an attractive alternative to replace, totally or partially, fossil ones in the medium term, mainly in aviation and long-distance transportation. In this regard, coprocessing biomass-derived feedstocks in conventional oil refineries might facilitate the transition from the current fossil-based transport to a biobased one. This article addresses the economic and environmental feasibility of such a coprocessing strategy. The biomass-based feedstocks considered include bio-oil and char from the fast pyrolysis of lignocellulosic biomass, which are coprocessed in fluid catalytic cracking (FCC), hydrocracking, and/or cogasification units. The assessment was based on the standardized concept of eco-efficiency, which relates the environmental and economic performances of a system following a life-cycle approach. Data from a complete simulation of the refinery process, from raw materials to products, were used to perform a life cycle costing and eco-efficiency assessment of alternative configurations of the coprocessing strategy, which were benchmarked against the conventional fossil refinery system. Among other relevant results, the eco-efficiency related to the system's carbon footprint was found to improve when considering coprocessing in the hydrocracking unit, while coprocessing in FCC generally worsens the eco-efficiency score. Overall, it is concluded that coprocessing biomass-based feedstock in conventional crude oil refineries could be an eco-efficient energy solution, which requires a careful choice of the units where biofeedstock is fed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
12
Issue :
24
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
140943085
Full Text :
https://doi.org/10.3390/en12244664