Back to Search Start Over

A Comprehensive Data Gathering Network Architecture in Large-Scale Visual Sensor Networks.

Authors :
Zhang, Jing
Tsai, Pei-Wei
Xue, Xingsi
Ye, Xiucai
Zhang, Shunmiao
Source :
PLoS ONE. 1/7/2020, Vol. 15 Issue 1, p1-25. 25p.
Publication Year :
2020

Abstract

The fundamental utility of the Large-Scale Visual Sensor Networks (LVSNs) is to monitor specified events and to transmit the detected information back to the sink for achieving the data aggregation purpose. However, the events of interest are usually not uniformly distributed but frequently detected in certain regions in real-world applications. It implies that when the events frequently picked up by the sensors in the same region, the transmission load of LVSNs is unbalanced and potentially cause the energy hole problem. To overcome this kind of problem for network lifetime, a Comprehensive Visual Data Gathering Network Architecture (CDNA), which is the first comparatively integrated architecture for LVSNs is designed in this paper. In CDNA, a novel α-hull based event location algorithm, which is oriented from the geometric model of α-hull, is designed for accurately and efficiently detect the location of the event. In addition, the Chi-Square distribution event-driven gradient deployment method is proposed to reduce the unbalanced energy consumption for alleviating energy hole problem. Moreover, an energy hole repairing method containing an efficient data gathering tree and a movement algorithm is proposed to ensure the efficiency of transmitting and solving the energy hole problem. Simulations are made for examining the performance of the proposed architecture. The simulation results indicate that the performance of CDNA is better than the previous algorithms in the realistic LVSN environment, such as the significant improvement of the network lifetime. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
15
Issue :
1
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
141097318
Full Text :
https://doi.org/10.1371/journal.pone.0226649