Back to Search Start Over

Oxidized Renewable Materials for the Removal of Cobalt(II) and Copper(II) from Aqueous Solution Using in Batch and Fixed-Bed Column Adsorption.

Authors :
Rodrigues, Josilene Aparecida Vieira
Martins, Luide Rodrigo
Furtado, Laís Milagres
Xavier, Amália Luísa Pedrosa
Almeida, Francine Tatiane Rezende de
Moreira, Ana Luísa da Silva Lage
Melo, Tânia Márcia Sacramento
Gil, Laurent Frédéric
Gurgel, Leandro Vinícius Alves
Source :
Advances in Polymer Technology. 1/10/2020, p1-18. 18p.
Publication Year :
2020

Abstract

Batch and continuous adsorption of Co2+ and Cu2+ from aqueous solutions by oxidized sugarcane bagasse (SBox) and oxidized cellulose (Cox) were investigated. The oxidation reaction of sugarcane bagasse and cellulose was made with a mixture of H3PO4‒NaNO2 to obtain SBox and Cox, with the introduction of high number of carboxylic acid functions, 4.5 and 4.8 mmol/g, respectively. The adsorption kinetics of Co2+ and Cu2+ on SBox and Cox were modeled using two models (pseudo-first-order and pseudo-second-order) and the rate-limiting step controlling the adsorption was evaluated by Boyd and intraparticle diffusion models. The Sips and Langmuir models better fitted the isotherms with values of maximum adsorption capacity Q max of 0.68 and 0.37 mmol/g for Co2+ and 1.20 and 0.57 mmol/g for Cu2+ adsorption on Cox and SBox, respectively. The reuse of both spent adsorbents was evaluated. Adsorption of Cu2+ and Co2+ on SBox in continuous was evaluated using a 22 factorial design with spatial time and initial metal concentration as independent variables and Q max and effective use of the bed as responses. The breakthrough curves were very well described by the Bohart–Adams original model and the Q max values for Co2+ and Cu2+ were 0.22 and 0.55 mmol/g. SBox confirmed to be a promising biomaterial for application on a large scale. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
07306679
Database :
Academic Search Index
Journal :
Advances in Polymer Technology
Publication Type :
Academic Journal
Accession number :
141157588
Full Text :
https://doi.org/10.1155/2020/8620431