Back to Search Start Over

FEAfix: FEA Refinement of Design Equations for Synchronous Reluctance Machines.

Authors :
Ferrari, Simone
Pellegrino, Gianmario
Source :
IEEE Transactions on Industry Applications. Jan/Feb2020, Vol. 56 Issue 1, p256-266. 11p.
Publication Year :
2020

Abstract

The synchronous reluctance (SyR) machine is an attractive substitute of induction motors and synchronous permanent magnet motors, owing to its high efficiency and low cost of manufacturing. Yet, its design cannot be considered a mature topic, especially for what concerns the rotor geometry. Design equations are proposed for SyR machines by different authors, representing a good starting point and a useful guideline for designers, but they are far from giving accurate results. Conversely, the design procedures based on finite-element analysis (FEA) tend to rely on the brute force of optimization algorithms rather than on the designer's insight. In this article, a comprehensive design procedure is proposed, where design equations are complemented by the use of the iron saturation curve and the new fast FEA approach named FEAfix. This corrects the equations results via few static FEA simulations per design plane, i.e., per family of machines, rather than by FEA simulating the single machine under design. The general conclusion is drawn that the considered analytical model alone tends to overestimate torque by as much as 40% (average on the design plane). Upon augmenting equations with the saturation curve, the average overestimate drops in the vicinity of 10% error. Finally, the proposed FEAfix refinement guarantees 2% to 1% torque evaluation error, depending on the admitted computational time. High precision is, therefore, obtained while retaining the generality of the analytical approach. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00939994
Volume :
56
Issue :
1
Database :
Academic Search Index
Journal :
IEEE Transactions on Industry Applications
Publication Type :
Academic Journal
Accession number :
141381382
Full Text :
https://doi.org/10.1109/TIA.2019.2954797