Back to Search Start Over

Ignition Delay Times of Oxy-Syngas and Oxy-Methane in Supercritical CO2 Mixtures for Direct-Fired Cycles.

Authors :
Barak, Samuel
Pryor, Owen
Ninnemann, Erik
Neupane, Sneha
Vasu, Subith
Xijia Lu
Forrest, Brock
Source :
Journal of Engineering for Gas Turbines & Power. Feb2020, Vol. 142 Issue 2, p1-8. 8p.
Publication Year :
2020

Abstract

The direct-fired supercritical CO2 (sCO2) cycles promise high efficiency and reduced emissions while enabling complete carbon capture. However, there is a severe lack of fundamental combustion kinetics knowledge required for the development and operation of these cycles, which operate at high pressures and with high CO2 dilution. Experiments at these conditions are very challenging and costly. In this study, a shock tube was used to investigate the auto-ignition tendencies of several mixtures under high carbon dioxide dilution and high fuel loading. Individual mixtures of oxy-syngas and oxy-methane fuels were added to CO2 bath gas environments and ignition delay time data were recorded. Reflected shock pressures neared 100 atm, above the critical pressure of carbon dioxide into the supercritical regime. In total, five mixtures were investigated with a pressure range of 70-100 atm and a temperature range of 1050-1350 K. Measured ignition delay times of all mixtures were compared with two leading chemical kinetic mechanisms for their predictive accuracy. The mixtures included four oxy-syngas and one oxy-methane compositions. The literature mechanisms tended to show good agreement with the data for the methane mixture, while these models were not able to accurately capture all behavior for syngas mixtures tested in this study. For this reason, there is a need to further investigate the discrepancies. To the best of our knowledge, we report the first ignition data for the selected mixtures at these conditions. Current work also highlights the need for further work at high pressures to fully understand the chemical kinetic behavior of these mixtures to enable the sCO2 power cycle development. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
07424795
Volume :
142
Issue :
2
Database :
Academic Search Index
Journal :
Journal of Engineering for Gas Turbines & Power
Publication Type :
Academic Journal
Accession number :
141467174
Full Text :
https://doi.org/10.1115/1.4045743