Back to Search Start Over

Role of graphite on the corrosion resistance improvement of MgO–C bricks to MnO-rich slag.

Authors :
Liu, Yu
Wang, Qiang
Li, Guangqiang
Zhang, Jinshuai
Yan, Wen
Huang, Ao
Source :
Ceramics International. Apr2020, Vol. 46 Issue 6, p7517-7522. 6p.
Publication Year :
2020

Abstract

In order to clarify the effect of graphite content on the corrosion behavior of MgO–C refractories immersed in MnO-rich slag, the MgO–C refractory samples bearing 5 wt%, 10 wt% and 15 wt% graphite were prepared, and exposed in the slag composed of 40 wt% CaO, 40 wt% SiO 2 and 20 wt% MnO. The results show that metallic Mn particles and (Mg,Mn)O solid solution are formed at the slag/refractories interface. Whereas, no dense layer is formed by (Mg,Mn)O solid solution at the interface. The decrease in MnO content of slag is mainly attributed to the reaction with graphite to form liquid Mn. The graphite is found in the slag, and dissolved in the form of oxidation. The poor wetting limits the contact area of graphite and slag, reducing graphite oxidation and decarburized area. The graphite does not become the passage for slag to penetrate into the refractories due to the oxidation. On the contrary, the dissolution of MgO in slag is faster than graphite, thus is mainly responsible for the degradation of refractories. As a result, MnO and MgO contents change less in the slag contacted with the refractories bearing higher graphite content. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02728842
Volume :
46
Issue :
6
Database :
Academic Search Index
Journal :
Ceramics International
Publication Type :
Academic Journal
Accession number :
141882682
Full Text :
https://doi.org/10.1016/j.ceramint.2019.11.250