Back to Search Start Over

Fabrication and Application of a 3D-Printed Poly-ε-Caprolactone Cage Scaffold for Bone Tissue Engineering.

Authors :
Wang, Siyi
Li, Rong
Xu, Yongxiang
Xia, Dandan
Zhu, Yuan
Yoon, Jungmin
Gu, Ranli
Liu, Xuenan
Zhao, Wenyan
Zhao, Xubin
Liu, Yunsong
Sun, Yuchun
Zhou, Yongsheng
Source :
BioMed Research International. 1/30/2020, p1-12. 12p.
Publication Year :
2020

Abstract

Poly-ε-caprolactone (PCL) is a promising synthetic material in bone tissue engineering (BTE). Particularly, the introduction of rapid prototyping (RP) represents the possibility of manufacturing PCL scaffolds with customized appearances and structures. Bio-Oss is a natural bone mineral matrix with significant osteogenic effects; however, it has limitations in being constructed and maintained into specific shapes and sites. In this study, we used RP and fabricated a hollow-structured cage-shaped PCL scaffold loaded with Bio-Oss to form a hybrid scaffold for BTE. Moreover, we adopted NaOH surface treatment to improve PCL hydrophilicity and enhance cell adhesion. The results showed that the NaOH-treated hybrid scaffold could enhance the osteogenesis of human bone marrow-derived mesenchymal stem cells (hBMMSCs) both in vitro and in vivo. Altogether, we reveal a novel hybrid scaffold that not only possesses osteoinductive function to promote bone formation but can also be fabricated into specific forms. This scaffold design may have great application potential in bone tissue engineering. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23146133
Database :
Academic Search Index
Journal :
BioMed Research International
Publication Type :
Academic Journal
Accession number :
141922319
Full Text :
https://doi.org/10.1155/2020/2087475