Back to Search Start Over

Ultrahigh Speed and Broadband Few‐Layer MoTe2/Si 2D–3D Heterojunction‐Based Photodiodes Fabricated by Pulsed Laser Deposition.

Authors :
Lu, Zhijian
Xu, Yan
Yu, Yongqiang
Xu, Kewei
Mao, Jie
Xu, Gaobin
Ma, Yuanming
Wu, Di
Jie, Jiansheng
Source :
Advanced Functional Materials. 2/26/2020, Vol. 30 Issue 9, p1-9. 9p.
Publication Year :
2020

Abstract

2D transition metal dichalcogenides are promising candidates for high‐performance photodetectors. However, the relatively low response speed as well as the complex transfer process hinders their wide applications. Herein, for the first time, the fabrication of a few‐layer MoTe2/Si 2D–3D vertical heterojunction for high‐speed and broadband photodiodes by a pulsed laser deposition technique is reported. Owing to the high junction quality, ultrathin MoTe2 film thickness, and unique vertical n–n heterojunction structure, the photodiode exhibits excellent device performance in terms of a high responsivity of 0.19 A W−1 and a large detectivity of 6.8 × 1013 Jones. The device is also capable of detecting a broadband light with wavelength spanning from 300 to 1800 nm. More importantly, the device possesses an ultrahigh response speed up to 150 ns with a 3‐dB electrical bandwidth approaching 0.12 GHz. This work paves the way toward the fabrication of novel 2D–3D heterojunctions for high‐performance, ultrafast photodetectors. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
30
Issue :
9
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
141935012
Full Text :
https://doi.org/10.1002/adfm.201907951