Back to Search Start Over

Interesting molecule adsorption strategy induced energy band tuning: Boosts 43 times photocatalytic Water splitting ability for commercial TiO2.

Authors :
Hu, Jindou
Xie, Jing
Jia, Wei
Zhang, Su
Wang, Shiqiang
Wang, Kun
Cao, Yali
Source :
Applied Catalysis B: Environmental. Jul2020, Vol. 268, pN.PAG-N.PAG. 1p.
Publication Year :
2020

Abstract

An interesting and ultra-simple organic molecule adsorption strategy was used to simultaneously increase the reduction ability of photogenerated electrons and light absorption of commercial TiO 2. Experimental and DFT theoretical calculations verified that the adsorbed organics can provide electrons for TiO 2 , the pre-provided electrons enable the conduction band bend upwards, thus enhance the reduction ability of photogenerated electrons and improve the light absorption ability of TiO 2. So the resulted photocatalytic performance increased by 43 times. • The ultra-simple adsorption strategy increases photocatalytic performance by 43 times. • The interesting strategy can simultaneously narrow band gap and increase conduction band position. • The electron supply mechanism is verified by experimental and DFT caculation results. The photogenerated electron reduction ability and light absorption capacity of photocatalysts are crucial to their photocatalytic hydrogen evolution performance. However, rising the conduction band position will widen the band gap and result in a decrease in light absorption efficiency. Herein, an ultra-simple and novel organic molecule adsorption strategy was carried out on the surface of commercial TiO 2 to simultaneously increase the reduction ability of photogenerated electrons and light absorption of commercial TiO 2. Then the contradiction mentioned above was perfectly solved by such an interesting strategy. The resultant ethylenediamine adsorbed TiO 2 exhibits excellent photocatalytic hydrogen evolution rate, which is 43 times higher than that of commercial TiO 2. Effectively, the experimental results and DFT theoretical calculations verified that the adsorbed organic molecule can provide electrons for TiO 2. The provided electrons enable the conduction band bend upwards, thus enhance the reduction ability of photogenerated electrons and improve the light absorption ability of TiO 2. More interestingly, the provided electrons can also promote the separation efficiency of photogenerated carriers by weakening the attraction of photogenerated holes to photogenerated electrons. Therefore, the efficiency of photocatalytic hydrogen production has been greatly improved. This work opens a new research field to enhance the photocatalytic performance by adsorbing various designed organics on the surface of photocatalysts. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09263373
Volume :
268
Database :
Academic Search Index
Journal :
Applied Catalysis B: Environmental
Publication Type :
Academic Journal
Accession number :
142064439
Full Text :
https://doi.org/10.1016/j.apcatb.2020.118753