Back to Search
Start Over
Enhanced Photo-Assisted Acetone Gas Sensor and Efficient Photocatalytic Degradation Using Fe-Doped Hexagonal and Monoclinic WO3 Phase−Junction.
- Source :
-
Nanomaterials (2079-4991) . Feb2020, Vol. 10 Issue 2, p398. 1p. - Publication Year :
- 2020
-
Abstract
- The development of WO3-based gas sensors for analysis of acetone in exhaled breath is significant for noninvasive diagnosis of diabetes. A series of Fe-doped hexagonal and monoclinic WO3 phase−junction (Fe−h/m−WO3) sensors were synthesized by the hydrothermal calcination method, and the influences of operating temperature and light irradiation on the response were studied. Under light emitting diode (LED) illumination, Fe−h/m−WO3 exhibited higher responses to acetone than those of the undoped WO3-based sensors at an operating temperature of 260 °C with 90% relative humidity, and good linearity between response and acetone concentration (0.5 to 2.5 ppm) was achieved under the 90% relative humidity condition. Meanwhile, the optimal Fe−h/m−WO3 sensor exhibited high selectivity and stability for a duration of three months. The excellent sensing performance of Fe−h/m−WO3 was attributed to the formation of phase−junction and Fe doping, and these were beneficial for the separation of photon−generated carriers and oxygen adsorption on the WO3 surface, promoting the generation of superoxide radicals, which was demonstrated by electron paramagnetic resonance and photocurrent tests. Additionally, the Fe−doped WO3 phase−junction sample also showed good photocatalytic performance for rhodamine B degradation. This study may provide some insights into rational design of new types of gas sensors and offer an alternative for noninvasive diagnosis of diabetes. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20794991
- Volume :
- 10
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Nanomaterials (2079-4991)
- Publication Type :
- Academic Journal
- Accession number :
- 142069170
- Full Text :
- https://doi.org/10.3390/nano10020398