Back to Search Start Over

The impact of reducing fatty acid desaturation on the composition and thermal stability of rapeseed oil.

Authors :
Kaur, Harjeevan
Wang, Lihong
Stawniak, Natalia
Sloan, Raymond
Erp, Harrie
Eastmond, Peter
Bancroft, Ian
Source :
Plant Biotechnology Journal. Apr2020, Vol. 18 Issue 4, p983-991. 9p.
Publication Year :
2020

Abstract

Summary: Oilseed rape (Brassica napus) is the third largest source of vegetable oil globally. In addition to food uses, there are industrial applications that exploit the ability of the species to accumulate the very‐long‐chain fatty acid (VLCFA) erucic acid in its seed oil, controlled by orthologues of FATTY ACID ELONGASE 1 (Bna.FAE1.A8 and Bna.FAE1.C3). The proportion of polyunsaturated fatty acids (PUFAs) in rapeseed oil is predicted to affect its thermal stability and is controlled by orthologues of FATTY ACID DESATURASE 2, particularly Bna.FAD2.C5. Our aim was to develop rapeseed lines combining high erucic and low PUFA characters and to assess the impact on thermal stability of the oil they produce. The new type of rapeseed oil (high erucic low polyunsaturate; HELP) contained a substantially greater proportion of erucic acid (54%) compared with high erucic rapeseed oil (46%). Although the total VLCFA content was greater in oil from HELP lines (64%) than from high erucic rapeseed (57%), analysis of triacylglycerol composition showed negligible incorporation of VLCFAs into the sn‐2 position. Rancimat analysis showed that the thermal stability of rapeseed oil was improved greatly as a consequence of reduction of PUFA content, from 3.8 and 4.2 h in conventional low erucic and high erucic rapeseed oils, respectively, to 11.3 and 16.4 h in high oleic low PUFA (HOLP) and HELP oils, respectively. Our results demonstrate that engineering of the lipid biosynthetic pathway of rapeseed, using traditional approaches, enables the production of renewable industrial oils with novel composition and properties. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14677644
Volume :
18
Issue :
4
Database :
Academic Search Index
Journal :
Plant Biotechnology Journal
Publication Type :
Academic Journal
Accession number :
142137972
Full Text :
https://doi.org/10.1111/pbi.13263