Back to Search Start Over

A universal state equation of particle gases for passenger flights in United States.

Authors :
Yao, Pei-Wen
Wang, Yan-Jun
Zhu, Chen-Ping
Wu, Fan
Hu, Ming-Hua
Yang, Hui-Jie
Duong, Vu
Hu, Chin-Kun
Stanley, H. Eugene
Source :
Physica A. May2020, Vol. 545, pN.PAG-N.PAG. 1p.
Publication Year :
2020

Abstract

Flight delays have negative impacts on passengers, carriers, and airports. To reduce these unpopular influence, we need to find the statistical law of the collective behavior of passenger flights. We use a mean-field approach to analyze big data listing the departure and arrival records of all American domestic passenger flights in 20 years. We treat passenger flights as particle gases and define their dimensionless velocity, quasi-thermodynamic quantities — pressure, volume, temperature, and mole number, respectively. By introducing phenomenological parameters a and b to set up van der Waals-like state equations, we erect a universal gaseous constant R for actually operated passenger flights, their counterparts on schedule, and "delayor gases" defined as the difference between them. We find that the attractive coefficient of "delayor gases" positively correlates with the average delay per flight on airports. Rescaling state equations for passenger flights across all 20 years, we find a universal function. This is a significant step toward understanding flight delays and dealing with temporal big data with the tools of statistical physics. • The air transportation is studied with departure/arrival records for 20 years from statistical physics perspective. • The passenger flights are treated as particle gases, and a van der Waals-like state equation is set up. • The universal form of the state equation is found by rescaling those for different years. • A novel virtual particle gas - "delayor gas" is defined to promote the research on flight delays. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03784371
Volume :
545
Database :
Academic Search Index
Journal :
Physica A
Publication Type :
Academic Journal
Accession number :
142273996
Full Text :
https://doi.org/10.1016/j.physa.2019.123748