Back to Search
Start Over
Learning directed acyclic graph SPNs in sub-quadratic time.
- Source :
-
International Journal of Approximate Reasoning . May2020, Vol. 120, p48-73. 26p. - Publication Year :
- 2020
-
Abstract
- In this paper, we present Prometheus, a graph partitioning based algorithm that creates multiple variable decompositions efficiently for learning Sum-Product Network structures across both continuous and discrete domains. Prometheus proceeds by creating multiple candidate decompositions that are represented compactly with an acyclic directed graph in which common parts of different decompositions are shared. It eliminates the correlation threshold hyperparameter often used in other structure learning techniques, allowing Prometheus to learn structures that are robust in low data regimes. Prometheus outperforms other structure learning techniques in 30 discrete and continuous domains. We also extend Prometheus to exploit sparsity in correlations between features in order to obtain an efficient sub-quadratic algorithm (w.r.t. the number of features) that scales better to high dimensional datasets. [ABSTRACT FROM AUTHOR]
- Subjects :
- *DIRECTED acyclic graphs
*PARALLEL algorithms
*REINFORCEMENT learning
Subjects
Details
- Language :
- English
- ISSN :
- 0888613X
- Volume :
- 120
- Database :
- Academic Search Index
- Journal :
- International Journal of Approximate Reasoning
- Publication Type :
- Periodical
- Accession number :
- 142499007
- Full Text :
- https://doi.org/10.1016/j.ijar.2020.01.005