Back to Search Start Over

The effect of urban morphology on the solar capacity of three-dimensional cities.

Authors :
Zhu, Rui
Wong, Man Sing
You, Linlin
Santi, Paolo
Nichol, Janet
Ho, Hung Chak
Lu, Lin
Ratti, Carlo
Source :
Renewable Energy: An International Journal. Jun2020, Vol. 153, p1111-1126. 16p.
Publication Year :
2020

Abstract

As a clean and renewable resource, solar energy is increasingly being used to relieve the pressures on environmental protection and the exhaustion of conventional energy. Although photovoltaic modules have been installed in many cities, the lack of quantitative mapping of the annual solar energy potential of urban surfaces hinders the effective utilization of solar energy. Herein, we provide a solar irradiation estimation solution for three-dimensional (3D) cities to quantify annual irradiations on urban envelopes and to investigate the effect of urban morphology on the resulting solar capacity. By modelling urban surfaces as 3D point clouds, annual irradiations of the point clouds were estimated. An empirical investigation across ten cities suggests that urban areas at lower latitudes tend to have larger values of annual irradiation; moreover, an area having greater building heights consistently has the largest third quartile of irradiation compared with lower buildings in the same city. Conversely, areas with many low buildings have a larger proportion of useable areas; in this arrangement, façades can optimally utilize solar energy, meaning that large irradiations are concentrated on certain façades. The Pearson correlation coefficients between solar capacity and urban morphology indices suggest that urban morphology has an important effect on solar capacity. • Proposes a 3D solar city including multiple reflections between urban envelops. • Estimates annual solar irradiation and solar capacity on 10 cities across the world. • Reveals distribution patterns of annual solar irradiation on three partitions. • Analyzes the useable areas that are quantitatively high and spatially concentrated. • Urban morphology has an important effect on solar capacity influenced by weather. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09601481
Volume :
153
Database :
Academic Search Index
Journal :
Renewable Energy: An International Journal
Publication Type :
Academic Journal
Accession number :
142537776
Full Text :
https://doi.org/10.1016/j.renene.2020.02.050