Back to Search Start Over

Effects of Ion Beam Etching on the Nanoscale Damage Precursor Evolution of Fused Silica.

Authors :
Zhong, Yaoyu
Dai, Yifan
Shi, Feng
Song, Ci
Tian, Ye
Lin, Zhifan
Zhang, Wanli
Shen, Yongxiang
Source :
Materials (1996-1944). Mar2020, Vol. 13 Issue 6, p1294. 1p. 1 Color Photograph, 6 Graphs.
Publication Year :
2020

Abstract

Nanoscale laser damage precursors generated from fabrication have emerged as a new bottleneck that limits the laser damage resistance improvement of fused silica optics. In this paper, ion beam etching (IBE) technology is performed to investigate the evolutions of some nanoscale damage precursors (such as contamination and chemical structural defects) in different ion beam etched depths. Surface material structure analyses and laser damage resistance measurements are conducted. The results reveal that IBE has an evident cleaning effect on surfaces. Impurity contamination beneath the polishing redeposition layer can be mitigated through IBE. Chemical structural defects can be significantly reduced, and surface densification is weakened after IBE without damaging the precision of the fused silica surface. The photothermal absorption on the fused silica surface can be decreased by 41.2%, and the laser-induced damage threshold can be raised by 15.2% after IBE at 250 nm. This work serves as an important reference for characterizing nanoscale damage precursors and using IBE technology to increase the laser damage resistance of fused silica optics. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
13
Issue :
6
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
142581591
Full Text :
https://doi.org/10.3390/ma13061294