Back to Search Start Over

Constraining the Neutrino Mass with the Drifting Coefficient of the Field Cluster Mass Function.

Authors :
Ryu, Suho
Lee, Jounghun
Source :
Astrophysical Journal. May2020, Vol. 894 Issue 1, p1-6. 6p.
Publication Year :
2020

Abstract

A new diagnostics to break the degeneracy between the total neutrino mass (Mν) and the primordial power spectrum amplitude (σ8) using the drifting coefficient of the field cluster mass function is presented. Analyzing the data from the Cosmological Massive Neutrino Simulations, we first determine the numerical mass functions of the field clusters at various redshifts. Then, we compare the numerical results with the analytical model characterized by a single parameter called the drifting coefficient, which measures the drifts of the collapse density threshold, δc, from the Einstein–de Sitter spherical value, δsc, at a given mass scale. It is found that the analytic model for the field cluster mass function is found to work excellently even in the presence of massive neutrinos, and that its drifting coefficient evolves differently in the cosmologies with different values of Mν. At low redshifts (z ≲ 0.3) the more massive neutrinos drift δc further from δsc, while the opposite trend is found at higher redshifts (z ≳ 0.3). Speculating that this distinct redshift-dependent effect of massive neutrinos on the drifting coefficient of the field cluster mass function might help break the σ8–Mν degeneracy, we also show that the sensitivity of this new diagnostics to Mν is high enough to discriminate the case of Mν = 0.1 eV from that of massless neutrinos. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0004637X
Volume :
894
Issue :
1
Database :
Academic Search Index
Journal :
Astrophysical Journal
Publication Type :
Academic Journal
Accession number :
143141955
Full Text :
https://doi.org/10.3847/1538-4357/ab838d