Back to Search Start Over

The Impact of Temperature and Switching Rate on Dynamic Transients of High-Voltage Silicon and 4H-SiC NPN BJTs: A Technology Evaluation.

Authors :
Jahdi, Saeed
Hedayati, Mohammad
Stark, Bernard H.
Mellor, Phil H.
Source :
IEEE Transactions on Industrial Electronics. Jun2020, Vol. 67 Issue 6, p4556-4566. 11p.
Publication Year :
2020

Abstract

This paper reports the application of silicon bipolar junction transistor (BJT) modeling techniques to the modeling of dynamic behavior of high-voltage 4H-SiC BJTs, and the experimental validation thereof. High-voltage silicon BJTs are impractical due to their low current gain that requires a bulky base driver. Emergence of high-voltage 4H-SiC vertical NPN BJTs with a tenfold higher gain enables the application of efficient drivers, with ratings close to those of IGBTs. This paper demonstrates the advantages offered by 4H-SiC BJTs by means of wide-scale measurements at 800 V and 10 A in a range of temperatures up to 175 °C and adjusted base driver switching rates. This paper shows that the turn-off storage delay in the SiC BJT is two orders of magnitude lower than that of the silicon device. It also shows that the turn-on switching transients of SiC device are by an order of magnitude and the turn-off transients are by two orders of magnitude faster than that of its silicon counterpart, resulting in a tenfold reduction of the switching energy. It also demonstrates the temperature dependence of switching transients of the silicon BJT, and the relative temperature-invariance of the SiC device's performance. This paper concludes with validation of the transient models for the 4H-SiC NPN BJT, showing that the model is sufficiently accurate for transient switching and loss calculations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02780046
Volume :
67
Issue :
6
Database :
Academic Search Index
Journal :
IEEE Transactions on Industrial Electronics
Publication Type :
Academic Journal
Accession number :
143316193
Full Text :
https://doi.org/10.1109/TIE.2019.2922918