Back to Search Start Over

In-amplifier and cascaded mid-infrared supercontinuum sources with low noise through gain-induced soliton spectral alignment.

Authors :
Kwarkye, Kyei
Jensen, Mikkel
Engelsholm, Rasmus D.
Dasa, Manoj K.
Jain, Deepak
Bowen, Patrick
Moselund, Peter M.
Petersen, Christian R.
Bang, Ole
Source :
Scientific Reports. 5/19/2020, Vol. 10 Issue 1, p1-11. 11p.
Publication Year :
2020

Abstract

The pulse-to-pulse relative intensity noise (RIN) of near-infrared (near-IR) in-amplifier supercontinuum (SC) sources and mid-IR cascaded SC sources was experimentally and numerically investigated and shown to have significantly lowered noise due to the fundamental effect of gain-induced soliton-spectral alignment. The mid-IR SC source is based on a near-IR in-amplifier SC pumping a cascade of thulium-doped and ZBLAN fibers. We demonstrate that the active thulium-doped fiber not only extend the spectrum, but also to significantly reduce the RIN by up to 22% in the long wavelength region above 2 μm. Using numerical simulations, we demonstrate that the noise reduction is the result of an interplay between absorption-emission processes and nonlinear soliton dynamics leading to the soliton-spectral alignment. In the same way we show that the RIN of the near-IR in-amplifier SC source is already significantly reduced because the spectral broadening takes place in an active fiber that also introduces soliton-spectral alignment. We further show that the low noise properties are transferred to the subsequent fluoride SC, which has a RIN lower than 10% (5%) in a broad region from 1.1–3.6 μm (1.4–3.0 μm). The demonstrated low noise significantly improves the applicability of these broadband sources for mid-IR imaging and spectroscopy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
10
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
143329522
Full Text :
https://doi.org/10.1038/s41598-020-65150-6