Back to Search Start Over

A species-specific miRNA participates in biomineralization by targeting CDS regions of Prisilkin-39 and ACCBP in Pinctada fucata.

Authors :
Zhu, Xuejing
Chen, Yan
Zhang, Zhen
Zhao, Shuyan
Xie, Liping
Zhang, Rongqing
Source :
Scientific Reports. 6/2/2020, Vol. 10 Issue 1, p1-12. 12p.
Publication Year :
2020

Abstract

Biomineralization is a sophisticated biological process precisely regulated by multiple molecules and pathways. Accumulating miRNAs have been identified in invertebrates but their functions in biomineralization are poorly studied. Here, an oyster species-specific miRNA, novel_miR_1 was found to regulate biomineralization in Pinctada fucata. Target prediction showed that novel_miR_1 could target Prisilkin-39 and ACCBP by binding to their coding sequences (CDS). Tissue distribution analysis revealed that the expression level of novel_miR_1 was highest in the mantle, which was a key tissue participating in biomineralization. Gain-of-function assay in vivo showed that biomineralization-related genes including Prisilkin-39 and ACCBP were down-regulated and shell inner surfaces of both prismatic and nacreous layer were disrupted after the over-expression of novel_miR_1, indicating its dual roles in biomineralization. Furthermore, the shell notching results indicated that novel_miR_1 was involved in shell regeneration. Dual-luciferase reporter assay in vitro demonstrated that novel_miR_1 directly suppressed Prisilkin-39 and ACCBP genes by binding to the CDS regions. Taken together, these results suggest that novel_miR_1 is a direct negative regulator to Prisilkin-39 and ACCBP and plays an indispensable and important role in biomineralization in both prismatic and nacreous layer of P. fucata. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
10
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
143543252
Full Text :
https://doi.org/10.1038/s41598-020-65708-4