Back to Search
Start Over
Quantum dimensions and irreducible modules of some diagonal coset vertex operator algebras.
- Source :
-
Letters in Mathematical Physics . Jun2020, Vol. 110 Issue 6, p1363-1380. 18p. - Publication Year :
- 2020
-
Abstract
- In this paper, under the assumption that the diagonal coset vertex operator algebra C (L g (k + l , 0) , L g (k , 0) ⊗ L g (l , 0)) is rational and C 2 -cofinite, the global dimension of C (L g (k + l , 0) , L g (k , 0) ⊗ L g (l , 0)) is obtained and the quantum dimensions of multiplicity spaces viewed as C (L g (k + l , 0) , L g (k , 0) ⊗ L g (l , 0)) -modules are also obtained. As an application, a method to classify irreducible modules of C (L g (k + l , 0) , L g (k , 0) ⊗ L g (l , 0)) is provided. As an example, we prove that the diagonal coset vertex operator algebra C (L E 8 (k + 2 , 0) , L E 8 (k , 0) ⊗ L E 8 (2 , 0)) is rational, C 2 -cofinite, and classify irreducible modules of C (L E 8 (k + 2 , 0) , L E 8 (k , 0) ⊗ L E 8 (2 , 0)) . [ABSTRACT FROM AUTHOR]
- Subjects :
- *VERTEX operator algebras
*C*-algebras
*LIE algebras
Subjects
Details
- Language :
- English
- ISSN :
- 03779017
- Volume :
- 110
- Issue :
- 6
- Database :
- Academic Search Index
- Journal :
- Letters in Mathematical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 143677710
- Full Text :
- https://doi.org/10.1007/s11005-020-01264-2