Back to Search Start Over

Untitled.

Authors :
Diop, Khoudia
Andrieu, Claudia
Michelle, Caroline
Armstrong, Nicholas
Bittar, Fadi
Bretelle, Florence
Fournier, Pierre-Edouard
Raoult, Didier
Fenollar, Florence
Source :
Current Microbiology. Nov2017, p1-8.
Publication Year :
2017

Abstract

<break></break>The study of the vaginal microbiota using the “culturomics concept” allowed us to isolate, from the vaginal swab of an asymptomatic 20-year-old woman who had sexual relations with another woman with bacterial vaginosis, an unknown Gram-positive anaerobic coccus-shaped bacterium that was designated strain Marseille-P2951T and characterized using taxono-genomics. Strain Marseille-P2951T is non-motile and non-spore forming and exhibits catalase and oxidase activities. Its 16S rRNA gene-based identification showed 98.5% identity with <italic>Ezakiella peruensis</italic>, the phylogenetically closest species. The major fatty acids are C18:1n9 (58%) and C16:0 (22%). With a 1,741,785 bp length, the G+C content of the genome is 36.69%. Of a total of 1657 genes, 1606 are protein-coding genes and 51 RNAs. Also, 1123 genes are assigned a putative function and 127 are ORFans. Phenotypic, phylogenetic, and genomics analyses revealed that strain Marseille-P2951T (=CSUR P2951 =DSM 103122) is distinct and represents a new species of the genus <italic>Ezakiella</italic>, for which the name <italic>Ezakiella massiliensis</italic> sp. nov. is proposed.<break></break><break></break>The study of the vaginal microbiota using the “culturomics concept” allowed us to isolate, from the vaginal swab of an asymptomatic 20-year-old woman who had sexual relations with another woman with bacterial vaginosis, an unknown Gram-positive anaerobic coccus-shaped bacterium that was designated strain Marseille-P2951T and characterized using taxono-genomics. Strain Marseille-P2951T is non-motile and non-spore forming and exhibits catalase and oxidase activities. Its 16S rRNA gene-based identification showed 98.5% identity with <italic>Ezakiella peruensis</italic>, the phylogenetically closest species. The major fatty acids are C18:1n9 (58%) and C16:0 (22%). With a 1,741,785 bp length, the G+C content of the genome is 36.69%. Of a total of 1657 genes, 1606 are protein-coding genes and 51 RNAs. Also, 1123 genes are assigned a putative function and 127 are ORFans. Phenotypic, phylogenetic, and genomics analyses revealed that strain Marseille-P2951T (=CSUR P2951 =DSM 103122) is distinct and represents a new species of the genus <italic>Ezakiella</italic>, for which the name <italic>Ezakiella massiliensis</italic> sp. nov. is proposed.<break></break><break></break>The study of the vaginal microbiota using the “culturomics concept” allowed us to isolate, from the vaginal swab of an asymptomatic 20-year-old woman who had sexual relations with another woman with bacterial vaginosis, an unknown Gram-positive anaerobic coccus-shaped bacterium that was designated strain Marseille-P2951T and characterized using taxono-genomics. Strain Marseille-P2951T is non-motile and non-spore forming and exhibits catalase and oxidase activities. Its 16S rRNA gene-based identification showed 98.5% identity with <italic>Ezakiella peruensis</italic>, the phylogenetically closest species. The major fatty acids are C18:1n9 (58%) and C16:0 (22%). With a 1,741,785 bp length, the G+C content of the genome is 36.69%. Of a total of 1657 genes, 1606 are protein-coding genes and 51 RNAs. Also, 1123 genes are assigned a putative function and 127 are ORFans. Phenotypic, phylogenetic, and genomics analyses revealed that strain Marseille-P2951T (=CSUR P2951 =DSM 103122) is distinct and represents a new species of the genus <italic>Ezakiella</italic>, for which the name <italic>Ezakiella massiliensis</italic> sp. nov. is proposed.<break></break><break></break>The study of the vaginal microbiota using the “culturomics concept” allowed us to isolate, from the vaginal swab of an asymptomatic 20-year-old woman who had sexual relations with another woman with bacterial vaginosis, an unknown Gram-positive anaerobic coccus-shaped bacterium that was designated strain Marseille-P2951T and characterized using taxono-genomics. Strain Marseille-P2951T is non-motile and non-spore forming and exhibits catalase and oxidase activities. Its 16S rRNA gene-based identification showed 98.5% identity with <italic>Ezakiella peruensis</italic>, the phylogenetically closest species. The major fatty acids are C18:1n9 (58%) and C16:0 (22%). With a 1,741,785 bp length, the G+C content of the genome is 36.69%. Of a total of 1657 genes, 1606 are protein-coding genes and 51 RNAs. Also, 1123 genes are assigned a putative function and 127 are ORFans. Phenotypic, phylogenetic, and genomics analyses revealed that strain Marseille-P2951T (=CSUR P2951 =DSM 103122) is distinct and represents a new species of the genus <italic>Ezakiella</italic>, for which the name <italic>Ezakiella massiliensis</italic> sp. nov. is proposed.<break></break><break></break>The study of the vaginal microbiota using the “culturomics concept” allowed us to isolate, from the vaginal swab of an asymptomatic 20-year-old woman who had sexual relations with another woman with bacterial vaginosis, an unknown Gram-positive anaerobic coccus-shaped bacterium that was designated strain Marseille-P2951T and characterized using taxono-genomics. Strain Marseille-P2951T is non-motile and non-spore forming and exhibits catalase and oxidase activities. Its 16S rRNA gene-based identification showed 98.5% identity with <italic>Ezakiella peruensis</italic>, the phylogenetically closest species. The major fatty acids are C18:1n9 (58%) and C16:0 (22%). With a 1,741,785 bp length, the G+C content of the genome is 36.69%. Of a total of 1657 genes, 1606 are protein-coding genes and 51 RNAs. Also, 1123 genes are assigned a putative function and 127 are ORFans. Phenotypic, phylogenetic, and genomics analyses revealed that strain Marseille-P2951T (=CSUR P2951 =DSM 103122) is distinct and represents a new species of the genus <italic>Ezakiella</italic>, for which the name <italic>Ezakiella massiliensis</italic> sp. nov. is proposed.<break></break><break></break>The study of the vaginal microbiota using the “culturomics concept” allowed us to isolate, from the vaginal swab of an asymptomatic 20-year-old woman who had sexual relations with another woman with bacterial vaginosis, an unknown Gram-positive anaerobic coccus-shaped bacterium that was designated strain Marseille-P2951T and characterized using taxono-genomics. Strain Marseille-P2951T is non-motile and non-spore forming and exhibits catalase and oxidase activities. Its 16S rRNA gene-based identification showed 98.5% identity with <italic>Ezakiella peruensis</italic>, the phylogenetically closest species. The major fatty acids are C18:1n9 (58%) and C16:0 (22%). With a 1,741,785 bp length, the G+C content of the genome is 36.69%. Of a total of 1657 genes, 1606 are protein-coding genes and 51 RNAs. Also, 1123 genes are assigned a putative function and 127 are ORFans. Phenotypic, phylogenetic, and genomics analyses revealed that strain Marseille-P2951T (=CSUR P2951 =DSM 103122) is distinct and represents a new species of the genus <italic>Ezakiella</italic>, for which the name <italic>Ezakiella massiliensis</italic> sp. nov. is proposed.<break></break><break></break>The study of the vaginal microbiota using the “culturomics concept” allowed us to isolate, from the vaginal swab of an asymptomatic 20-year-old woman who had sexual relations with another woman with bacterial vaginosis, an unknown Gram-positive anaerobic coccus-shaped bacterium that was designated strain Marseille-P2951T and characterized using taxono-genomics. Strain Marseille-P2951T is non-motile and non-spore forming and exhibits catalase and oxidase activities. Its 16S rRNA gene-based identification showed 98.5% identity with <italic>Ezakiella peruensis</italic>, the phylogenetically closest species. The major fatty acids are C18:1n9 (58%) and C16:0 (22%). With a 1,741,785 bp length, the G+C content of the genome is 36.69%. Of a total of 1657 genes, 1606 are protein-coding genes and 51 RNAs. Also, 1123 genes are assigned a putative function and 127 are ORFans. Phenotypic, phylogenetic, and genomics analyses revealed that strain Marseille-P2951T (=CSUR P2951 =DSM 103122) is distinct and represents a new species of the genus <italic>Ezakiella</italic>, for which the name <italic>Ezakiella massiliensis</italic> sp. nov. is proposed.<break></break><break></break>The study of the vaginal microbiota using the “culturomics concept” allowed us to isolate, from the vaginal swab of an asymptomatic 20-year-old woman who had sexual relations with another woman with bacterial vaginosis, an unknown Gram-positive anaerobic coccus-shaped bacterium that was designated strain Marseille-P2951T and characterized using taxono-genomics. Strain Marseille-P2951T is non-motile and non-spore forming and exhibits catalase and oxidase activities. Its 16S rRNA gene-based identification showed 98.5% identity with <italic>Ezakiella peruensis</italic>, the phylogenetically closest species. The major fatty acids are C18:1n9 (58%) and C16:0 (22%). With a 1,741,785 bp length, the G+C content of the genome is 36.69%. Of a total of 1657 genes, 1606 are protein-coding genes and 51 RNAs. Also, 1123 genes are assigned a putative function and 127 are ORFans. Phenotypic, phylogenetic, and genomics analyses revealed that strain Marseille-P2951T (=CSUR P2951 =DSM 103122) is distinct and represents a new species of the genus <italic>Ezakiella</italic>, for which the name <italic>Ezakiella massiliensis</italic> sp. nov. is proposed.<break></break><break></break>The study of the vaginal microbiota using the “culturomics concept” allowed us to isolate, from the vaginal swab of an asymptomatic 20-year-old woman who had sexual relations with another woman with bacterial vaginosis, an unknown Gram-positive anaerobic coccus-shaped bacterium that was designated strain Marseille-P2951T and characterized using taxono-genomics. Strain Marseille-P2951T is non-motile and non-spore forming and exhibits catalase and oxidase activities. Its 16S rRNA gene-based identification showed 98.5% identity with <italic>Ezakiella peruensis</italic>, the phylogenetically closest species. The major fatty acids are C18:1n9 (58%) and C16:0 (22%). With a 1,741,785 bp length, the G+C content of the genome is 36.69%. Of a total of 1657 genes, 1606 are protein-coding genes and 51 RNAs. Also, 1123 genes are assigned a putative function and 127 are ORFans. Phenotypic, phylogenetic, and genomics analyses revealed that strain Marseille-P2951T (=CSUR P2951 =DSM 103122) is distinct and represents a new species of the genus <italic>Ezakiella</italic>, for which the name <italic>Ezakiella massiliensis</italic> sp. nov. is proposed.<break></break><break></break>The study of the vaginal microbiota using the “culturomics concept” allowed us to isolate, from the vaginal swab of an asymptomatic 20-year-old woman who had sexual relations with another woman with bacterial vaginosis, an unknown Gram-positive anaerobic coccus-shaped bacterium that was designated strain Marseille-P2951T and characterized using taxono-genomics. Strain Marseille-P2951T is non-motile and non-spore forming and exhibits catalase and oxidase activities. Its 16S rRNA gene-based identification showed 98.5% identity with <italic>Ezakiella peruensis</italic>, the phylogenetically closest species. The major fatty acids are C18:1n9 (58%) and C16:0 (22%). With a 1,741,785 bp length, the G+C content of the genome is 36.69%. Of a total of 1657 genes, 1606 are protein-coding genes and 51 RNAs. Also, 1123 genes are assigned a putative function and 127 are ORFans. Phenotypic, phylogenetic, and genomics analyses revealed that strain Marseille-P2951T (=CSUR P2951 =DSM 103122) is distinct and represents a new species of the genus <italic>Ezakiella</italic>, for which the name <italic>Ezakiella massiliensis</italic> sp. nov. is proposed.<break></break><break></break>The study of the vaginal microbiota using the “culturomics concept” allowed us to isolate, from the vaginal swab of an asymptomatic 20-year-old woman who had sexual relations with another woman with bacterial vaginosis, an unknown Gram-positive anaerobic coccus-shaped bacterium that was designated strain Marseille-P2951T and characterized using taxono-genomics. Strain Marseille-P2951T is non-motile and non-spore forming and exhibits catalase and oxidase activities. Its 16S rRNA gene-based identification showed 98.5% identity with <italic>Ezakiella peruensis</italic>, the phylogenetically closest species. The major fatty acids are C18:1n9 (58%) and C16:0 (22%). With a 1,741,785 bp length, the G+C content of the genome is 36.69%. Of a total of 1657 genes, 1606 are protein-coding genes and 51 RNAs. Also, 1123 genes are assigned a putative function and 127 are ORFans. Phenotypic, phylogenetic, and genomics analyses revealed that strain Marseille-P2951T (=CSUR P2951 =DSM 103122) is distinct and represents a new species of the genus <italic>Ezakiella</italic>, for which the name <italic>Ezakiella massiliensis</italic> sp. nov. is proposed.<break></break><break></break>The study of the vaginal microbiota using the “culturomics concept” allowed us to isolate, from the vaginal swab of an asymptomatic 20-year-old woman who had sexual relations with another woman with bacterial vaginosis, an unknown Gram-positive anaerobic coccus-shaped bacterium that was designated strain Marseille-P2951T and characterized using taxono-genomics. Strain Marseille-P2951T is non-motile and non-spore forming and exhibits catalase and oxidase activities. Its 16S rRNA gene-based identification showed 98.5% identity with <italic>Ezakiella peruensis</italic>, the phylogenetically closest species. The major fatty acids are C18:1n9 (58%) and C16:0 (22%). With a 1,741,785 bp length, the G+C content of the genome is 36.69%. Of a total of 1657 genes, 1606 are protein-coding genes and 51 RNAs. Also, 1123 genes are assigned a putative function and 127 are ORFans. Phenotypic, phylogenetic, and genomics analyses revealed that strain Marseille-P2951T (=CSUR P2951 =DSM 103122) is distinct and represents a new species of the genus <italic>Ezakiella</italic>, for which the name <italic>Ezakiella massiliensis</italic> sp. nov. is proposed.<break></break><break></break>The study of the vaginal microbiota using the “culturomics concept” allowed us to isolate, from the vaginal swab of an asymptomatic 20-year-old woman who had sexual relations with another woman with bacterial vaginosis, an unknown Gram-positive anaerobic coccus-shaped bacterium that was designated strain Marseille-P2951T and characterized using taxono-genomics. Strain Marseille-P2951T is non-motile and non-spore forming and exhibits catalase and oxidase activities. Its 16S rRNA gene-based identification showed 98.5% identity with <italic>Ezakiella peruensis</italic>, the phylogenetically closest species. The major fatty acids are C18:1n9 (58%) and C16:0 (22%). With a 1,741,785 bp length, the G+C content of the genome is 36.69%. Of a total of 1657 genes, 1606 are protein-coding genes and 51 RNAs. Also, 1123 genes are assigned a putative function and 127 are ORFans. Phenotypic, phylogenetic, and genomics analyses revealed that strain Marseille-P2951T (=CSUR P2951 =DSM 103122) is distinct and represents a new species of the genus <italic>Ezakiella</italic>, for which the name <italic>Ezakiella massiliensis</italic> sp. nov. is proposed.<break></break> [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03438651
Database :
Academic Search Index
Journal :
Current Microbiology
Publication Type :
Academic Journal
Accession number :
143929086
Full Text :
https://doi.org/10.1007/s00284-017-1402-z