Back to Search Start Over

Double and Triple Node-Erasure-Correcting Codes Over Complete Graphs.

Authors :
Yohananov, Lev
Efron, Yuval
Yaakobi, Eitan
Source :
IEEE Transactions on Information Theory. Jul2020, Vol. 66 Issue 7, p4089-4103. 15p.
Publication Year :
2020

Abstract

In this paper we study array-based codes over graphs for correcting multiple node failures. These codes have applications to neural networks, associative memories, and distributed storage systems. We assume that the information is stored on the edges of a complete undirected graph and a node failure is the event where all the edges in the neighborhood of a given node have been erased. A code over graphs is called $\rho $ -node-erasure-correcting if it allows to reconstruct the erased edges upon the failure of any $\rho $ nodes or less. We present a binary optimal construction for double-node-erasure correction together with an efficient decoding algorithm, when the number of nodes is a prime number. Furthermore, we extend this construction for triple-node-erasure-correcting codes when the number of nodes is a prime number and two is a primitive element in $\mathbb {Z}_{n}$. These codes are at most a single bit away from optimality. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189448
Volume :
66
Issue :
7
Database :
Academic Search Index
Journal :
IEEE Transactions on Information Theory
Publication Type :
Academic Journal
Accession number :
144242894
Full Text :
https://doi.org/10.1109/TIT.2020.2971997