Back to Search
Start Over
ALGEBRAIC CUNTZ–KRIEGER ALGEBRAS.
- Source :
-
Journal of the Australian Mathematical Society . Aug2020, Vol. 109 Issue 1, p93-111. 19p. - Publication Year :
- 2020
-
Abstract
- We show that a directed graph $E$ is a finite graph with no sinks if and only if, for each commutative unital ring $R$ , the Leavitt path algebra $L_{R}(E)$ is isomorphic to an algebraic Cuntz–Krieger algebra if and only if the $C^{\ast }$ -algebra $C^{\ast }(E)$ is unital and $\text{rank}(K_{0}(C^{\ast }(E)))=\text{rank}(K_{1}(C^{\ast }(E)))$. Let $k$ be a field and $k^{\times }$ be the group of units of $k$. When $\text{rank}(k^{\times }) , we show that the Leavitt path algebra $L_{k}(E)$ is isomorphic to an algebraic Cuntz–Krieger algebra if and only if $L_{k}(E)$ is unital and $\text{rank}(K_{1}(L_{k}(E)))=(\text{rank}(k^{\times })+1)\text{rank}(K_{0}(L_{k}(E)))$. We also show that any unital $k$ -algebra which is Morita equivalent or stably isomorphic to an algebraic Cuntz–Krieger algebra, is isomorphic to an algebraic Cuntz–Krieger algebra. As a consequence, corners of algebraic Cuntz–Krieger algebras are algebraic Cuntz–Krieger algebras. [ABSTRACT FROM AUTHOR]
- Subjects :
- *ALGEBRA
*COMMUTATIVE rings
*DIRECTED graphs
Subjects
Details
- Language :
- English
- ISSN :
- 14467887
- Volume :
- 109
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Journal of the Australian Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 144403172
- Full Text :
- https://doi.org/10.1017/S1446788719000375