Back to Search Start Over

ALGEBRAIC CUNTZ–KRIEGER ALGEBRAS.

Authors :
NASR-ISFAHANI, ALIREZA
Source :
Journal of the Australian Mathematical Society. Aug2020, Vol. 109 Issue 1, p93-111. 19p.
Publication Year :
2020

Abstract

We show that a directed graph $E$ is a finite graph with no sinks if and only if, for each commutative unital ring $R$ , the Leavitt path algebra $L_{R}(E)$ is isomorphic to an algebraic Cuntz–Krieger algebra if and only if the $C^{\ast }$ -algebra $C^{\ast }(E)$ is unital and $\text{rank}(K_{0}(C^{\ast }(E)))=\text{rank}(K_{1}(C^{\ast }(E)))$. Let $k$ be a field and $k^{\times }$ be the group of units of $k$. When $\text{rank}(k^{\times }) , we show that the Leavitt path algebra $L_{k}(E)$ is isomorphic to an algebraic Cuntz–Krieger algebra if and only if $L_{k}(E)$ is unital and $\text{rank}(K_{1}(L_{k}(E)))=(\text{rank}(k^{\times })+1)\text{rank}(K_{0}(L_{k}(E)))$. We also show that any unital $k$ -algebra which is Morita equivalent or stably isomorphic to an algebraic Cuntz–Krieger algebra, is isomorphic to an algebraic Cuntz–Krieger algebra. As a consequence, corners of algebraic Cuntz–Krieger algebras are algebraic Cuntz–Krieger algebras. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14467887
Volume :
109
Issue :
1
Database :
Academic Search Index
Journal :
Journal of the Australian Mathematical Society
Publication Type :
Academic Journal
Accession number :
144403172
Full Text :
https://doi.org/10.1017/S1446788719000375