Back to Search Start Over

A Mechatronic Brake Booster for Electric Vehicles: Design, Control, and Experiment.

Authors :
Wu, Jian
Zhang, Haoran
He, Rui
Chen, Pengcheng
Chen, Hong
Source :
IEEE Transactions on Vehicular Technology. Jul2020, Vol. 69 Issue 7, p7040-7053. 14p.
Publication Year :
2020

Abstract

The electro-mechanical brake booster (EMBB) is a kind of mechatronic actuator, which is developed to suit the brake assist requirement of electric vehicles. In this paper, we report on the design of an EMBB system consisting of a dc motor, a two-state reduction of a gear and ball screw, a servo body, and a reaction disk. Considering the inconvenience of installation and high price of the pedal force sensor, we translate the control problem of brake power assist control to position tracking control. Meanwhile, a nonlinear control method for position tracking is presented to solve the problem of power assist braking, which is formalized as three parts: the steady-state control, feed-forward control based on reference dynamics, and state-dependent feedback control. The benefit of the nonlinear control method is that it offers a concise control law and performs well in engineering implementations. In addition, a second-order filter was designed to do the signal processing and obtain a higher-order derivative. Finally, the bench tests based on rapid control prototyping environment were designed and implemented to verify the performance of the controller. Test results show that both the position tracking performance and response time of the EMBB system performed well. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189545
Volume :
69
Issue :
7
Database :
Academic Search Index
Journal :
IEEE Transactions on Vehicular Technology
Publication Type :
Academic Journal
Accession number :
144615796
Full Text :
https://doi.org/10.1109/TVT.2020.2988275