Back to Search Start Over

Synthesis and Characterization of Photocurable Polyamidoamine Dendrimer Hydrogels as a Versatile Platform for Tissue Engineering and Drug Delivery.

Authors :
Desai, Pooja N.
Yuan, Quan
Yang, Hu
Source :
Biomacromolecules. Mar2010, Vol. 11 Issue 3, p666-673. 8p.
Publication Year :
2010

Abstract

In this work, we describe a novel polyamidoamine (PAMAM) dendrimer hydrogel (DH) platform with potential for tissue engineering and drug delivery. With PAMAM dendrimer G3.0 being the underlying carrier, polyethylene glycol (PEG) chains of various lengths (MW = 1500, 6000, or 12000 g mol−1) were coupled to the dendrimer to different extents, and the resulting PEGylated PAMAM dendrimers were further coupled with acrylate groups to yield photoreactive dendrimer macromonomers for gel formation. It was found that gelation based on photoreactive PAMAM G3.0 macromonomers was restricted by the degree of PEGylation, PEG chain length, and the distribution of acrylate groups on the dendrimer surface. Further, the architecture of the photoreactive macromonomers affects the structural stability and swelling of the resultant networks. A completely cross-linked network (DH-G3.0-12000H) with a high water swelling ratio was created by UV-curing of PAMAM dendrimer G3.0 coupled with 28 PEG 12000 chains in the presence of the eosin Y-based photoinitiating system. The disintegration of DH-G3.0-12000H was pH-insensitive. DH-G3.0-12000H was found to have similar cytocompatibility to un-cross-linked G3.0-12000H but a significantly lower cellular uptake by macrophages. With PAMAM dendrimer G3.5 being the underlying carrier, the dendrimer modified with 43 PEG 1500 chains was able to form a completely cross-linked network (DH-G3.5-1500H) by UV-curing in the presence of the eosin Y-based photoinitiating system. DH-G3.5-1500H exhibited pH-dependent disintegration. Its disintegration ratio increased with pH. PAMAM dendrimer hydrogels uniquely express the structural characteristics of both PEG hydrogel and PAMAM dendrimer and have potential for various applications in tissue engineering and drug delivery. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15257797
Volume :
11
Issue :
3
Database :
Academic Search Index
Journal :
Biomacromolecules
Publication Type :
Academic Journal
Accession number :
144954500
Full Text :
https://doi.org/10.1021/bm901240g