Back to Search Start Over

Emergence of a Radical‐Stabilizing Metal–Organic Framework as a Radio‐photoluminescence Dosimeter.

Authors :
Liu, Hanzhou
Qin, Haoming
Shen, Nannan
Yan, Siqi
Wang, Yaxing
Yin, Xuemiao
Chen, Xinjian
Zhang, Chao
Dai, Xing
Zhou, Ruhong
Ouyang, Xiaoping
Chai, Zhifang
Wang, Shuao
Source :
Angewandte Chemie. 8/24/2020, Vol. 132 Issue 35, p15321-15326. 6p.
Publication Year :
2020

Abstract

Radio‐photoluminescence (RPL) materials display a distinct radiation‐induced permanent luminescence center, and therefore find application in the detection of ionizing radiation. The current inventory of RPL materials, which were discovered by serendipity, has been limited to a small number of metal‐ion‐doped inorganic materials. Here we document the RPL of a metal–organic framework (MOF) for the first time: X‐ray induced free radicals are accumulated on the organic linker and are subsequently stabilized in the conjugated fragment in the structure, while the metal center acts as the X‐ray attenuator. These radicals afford new emission features in both UV‐excited and X‐ray excited luminescence spectra, making it possible to establish linear relationships between the radiation dose and the normalized intensity of the new emission feature. The MOF‐based RPL materials exhibit advantages in terms of the dose detection range, reusability, emission stability, and energy threshold. Based on a comprehensive electronic structure and energy diagram study, the rational design and a substantial expansion of candidate RPL materials can be anticipated. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00448249
Volume :
132
Issue :
35
Database :
Academic Search Index
Journal :
Angewandte Chemie
Publication Type :
Academic Journal
Accession number :
145206626
Full Text :
https://doi.org/10.1002/ange.202006380