Back to Search Start Over

Theoretical study of CO2 hydrogenation on Cu surfaces.

Authors :
Wang, Rong
Zhu, Beien
Zhang, Guiling
Gao, Yi
Source :
Journal of Molecular Modeling. Aug2020, Vol. 26 Issue 8, pN.PAG-N.PAG. 1p.
Publication Year :
2020

Abstract

CO2 reduction has attracted extensive attentions for its wide applications in chemical engineering and green chemistry. As one of major commercial catalysts, Cu have been widely studied considering its low price and high catalytic efficiency. However, previous studies were mostly focused on the Cu(111) surface, while other surfaces were rarely studied. In this work, we employed the density functional theory calculations to fully investigate the adsorption of all intermediates and products of CO2 hydrogenation on three low-index surfaces as Cu(111), Cu(100), and Cu(110), which have been reported as the main facets of Cu nanoparticles under reaction conditions. Besides, the reaction pathways were also discussed. Our results indicated CO2 hydrogenation is preferred to adopt formate pathways on the Cu surfaces, while the COOH pathway is least favorable. Moreover, Cu(100) and Cu(110) surfaces have the comparable (even better) catalytic activities compared with Cu(111) surface. This study provides the fundamental data for the adsorption and reaction of CO2 hydrogenation, which will be helpful for the design of Cu-based nanocatalysts. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16102940
Volume :
26
Issue :
8
Database :
Academic Search Index
Journal :
Journal of Molecular Modeling
Publication Type :
Academic Journal
Accession number :
145266353
Full Text :
https://doi.org/10.1007/s00894-020-04448-8