Back to Search
Start Over
Optimized Polynomial Virtual Fields Method for Constitutive Parameters Identification of Orthotropic Bimaterials.
- Source :
-
Advances in Materials Science & Engineering . 8/28/2020, p1-27. 27p. - Publication Year :
- 2020
-
Abstract
- Heterogeneous materials are widely applied in many fields. Owing to the spatial variation of its constitutive parameters, the mechanical characterization of heterogeneous materials is very important. The virtual fields method has been used to identify the constitutive parameters of materials. However, there is a limitation: constitutive parameters of one material have to be a priori; then, constitutive parameters of the other one can be identified. Aiming at this limitation, this article presents a method to identify the constitutive parameters of heterogeneous orthotropic bimaterials under the condition that constitutive parameters of both materials are all unknown from a single test. A constitutive parameter identification method of orthotropic bimaterials based on optimized virtual field and digital image correlation is proposed. The feasibility of this method is verified by simulating the deformation fields of a two-layer material under three-point bending load. The results of numerical experiments with FEM simulations show that the weighted relative error of the constitutive parameter is less than 1%. The results suggest that the variation coefficient-to-noise ratio can perform a priori evaluation of a confidence interval on the identified stiffness components. The results of numerical experiments with DIC simulations show that the weighted relative error is 1.44%, which is due to the noise in the strain data calculated by DIC method. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16878434
- Database :
- Academic Search Index
- Journal :
- Advances in Materials Science & Engineering
- Publication Type :
- Academic Journal
- Accession number :
- 145368507
- Full Text :
- https://doi.org/10.1155/2020/2974723