Back to Search Start Over

Beyond the limits of photoperception: constitutively active PHYTOCHROME B2 overexpression as a means of improving fruit nutritional quality in tomato.

Authors :
Alves, Frederico Rocha Rodrigues
Lira, Bruno Silvestre
Pikart, Filipe Christian
Monteiro, Scarlet Santos
Furlan, Cláudia Maria
Purgatto, Eduardo
Pascoal, Grazieli Benedetti
Andrade, Sónia Cristina da Silva
Demarco, Diego
Rossi, Magdalena
Freschi, Luciano
Source :
Plant Biotechnology Journal. Oct2020, Vol. 18 Issue 10, p2027-2041. 15p.
Publication Year :
2020

Abstract

Summary: Photoreceptor engineering has recently emerged as a means for improving agronomically beneficial traits in crop species. Despite the central role played by the red/far‐red photoreceptor phytochromes (PHYs) in controlling fruit physiology, the applicability of PHY engineering for increasing fleshy fruit nutritional content remains poorly exploited. In this study, we demonstrated that the fruit‐specific overexpression of a constitutively active GAF domain Tyr252‐to‐His PHYB2 mutant version (PHYB2Y252H) significantly enhances the accumulation of multiple health‐promoting antioxidants in tomato fruits, without negative collateral consequences on vegetative development. Compared with the native PHYB2 overexpression, PHYB2Y252H‐overexpressing lines exhibited more extensive increments in transcript abundance of genes associated with fruit plastid development, chlorophyll biosynthesis and metabolic pathways responsible for the accumulation of antioxidant compounds. Accordingly, PHYB2Y252H‐overexpressing fruits developed more chloroplasts containing voluminous grana at the green stage and overaccumulated carotenoids, tocopherols, flavonoids and ascorbate in ripe fruits compared with both wild‐type and PHYB2‐overexpressing lines. The impacts of PHYB2 or PHYB2Y252H overexpression on fruit primary metabolism were limited to a slight promotion in lipid biosynthesis and reduction in sugar accumulation. Altogether, these findings indicate that mutation‐based adjustments in PHY properties represent a valuable photobiotechnological tool for tomato biofortification, highlighting the potential of photoreceptor engineering for improving quality traits in fleshy fruits. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14677644
Volume :
18
Issue :
10
Database :
Academic Search Index
Journal :
Plant Biotechnology Journal
Publication Type :
Academic Journal
Accession number :
145667574
Full Text :
https://doi.org/10.1111/pbi.13362