Back to Search Start Over

Abundant distinct types of solutions for the nervous biological fractional FitzHugh–Nagumo equation via three different sorts of schemes.

Authors :
Abdel-Aty, Abdel-Haleem
Khater, Mostafa M. A.
Baleanu, Dumitru
Khalil, E. M.
Bouslimi, Jamel
Omri, M.
Source :
Advances in Difference Equations. 9/9/2020, Vol. 2020 Issue 1, pN.PAG-N.PAG. 1p.
Publication Year :
2020

Abstract

The dynamical attitude of the transmission for the nerve impulses of a nervous system, which is mathematically formulated by the Atangana–Baleanu (AB) time-fractional FitzHugh–Nagumo (FN) equation, is computationally and numerically investigated via two distinct schemes. These schemes are the improved Riccati expansion method and B-spline schemes. Additionally, the stability behavior of the analytical evaluated solutions is illustrated based on the characteristics of the Hamiltonian to explain the applicability of them in the model's applications. Also, the physical and dynamical behaviors of the gained solutions are clarified by sketching them in three different types of plots. The practical side and power of applied methods are shown to explain their ability to use on many other nonlinear evaluation equations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16871839
Volume :
2020
Issue :
1
Database :
Academic Search Index
Journal :
Advances in Difference Equations
Publication Type :
Academic Journal
Accession number :
145675059
Full Text :
https://doi.org/10.1186/s13662-020-02852-1