Back to Search Start Over

Optimum Sowing Dates for High-Yield Maize when Grown as Sole Crop in the North China Plain.

Authors :
Zhang, Xuepeng
Cheng, Jiali
Wang, Biao
Yan, Peng
Dai, Hongcui
Chen, Yuanquan
Sui, Peng
Source :
Agronomy. Apr2019, Vol. 9 Issue 4, p198-198. 1p.
Publication Year :
2019

Abstract

The maize sole cropping system solves problems related to ground water resource shortages and guarantees food security in the North China Plain. Using optimal sowing dates is an effective management practice for increasing maize yield. The goal of this study was to explore an optimum sowing date for high-yield maize. Six sowing dates (SDs) from early April to late June with intervals of 10 to 20 days between SD—SD1 (early April), SD2 (mid to late April), SD3 (early May), SD4 (mid to late May), SD5 (early June), SD6 (late June)—were applied from 2012 to 2017. The results showed that yield was correlated with the sowing date based on the thermal time before sowing (r = 0.62**), which was defined as the pre-thermal time (PTt), and that the yield was steadily maintained at a high level (>10,500 kg ha−1) when PTt was greater than 479 °C. To satisfy the growing degree-days required for maturity, maize needs to be sown before a PTt of 750 °C. Data analysis of the results from 2014, 2015, and 2017 revealed the following: i) Most of the grain-filling parameters of late-sown dates (SD4, SD5 and SD6) were better than those in early-sown dates (SD1, SD2, and SD3) in all years, because of the high daily maximum temperature (Tmax) and wide diurnal temperature (Td) from silking to blister (R1–R2) of early-sown dates. The weight of maximum grain-filling rate (Wmax) of SD3 decreased compare with SD4 by the narrow Td from blister to physiological maturity (R2–R6) in all years (−5, −12, and −33 mg kernel−1 in 2014, 2015, and 2017, respectively). ii) In 2017, the pollination failure rates of early-sown dates were 8.4~14.5%, which was caused by the high Tmax and Td of R1–R2. The apical kernel abortion rates were 28.6 (SD2) and 38.7% (SD3), which were affected by Tmax and Td during R2–R6. iii) Compared with late-sown dates, the wide Td of early-sown dates in R1–R2 was caused by higher Tmax, but the narrow Td in R2-R6 was caused by higher Tmin. Our results indicate that high-yielding maize can be obtained by postponing the sowing date with a PTt of 480~750 °C, which can prevent the negative effects of the high Tmax of R1–R2 and high Tmin of R2–R6 on kernel number and weight formation. Moreover, these above-mentioned traits should be considered for heat tolerance breeding to further increase the maize yield. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734395
Volume :
9
Issue :
4
Database :
Academic Search Index
Journal :
Agronomy
Publication Type :
Academic Journal
Accession number :
145950606
Full Text :
https://doi.org/10.3390/agronomy9040198