Back to Search Start Over

Running time analysis of the (1+1)-EA for robust linear optimization.

Authors :
Bian, Chao
Qian, Chao
Tang, Ke
Yu, Yang
Source :
Theoretical Computer Science. Dec2020, Vol. 843, p57-72. 16p.
Publication Year :
2020

Abstract

Evolutionary algorithms (EAs) have found many successful real-world applications, where the optimization problems are often subject to a wide range of uncertainties. To understand the practical behaviors of EAs theoretically, there are a series of efforts devoted to analyzing the running time of EAs for optimization under uncertainties. Existing studies mainly focus on noisy and dynamic optimization, while another common type of uncertain optimization, i.e., robust optimization, has been rarely touched. In this paper, we analyze the expected running time of the (1+1)-EA solving robust linear optimization problems (i.e., linear problems under robust scenarios) with a cardinality constraint k. Two common robust scenarios, i.e., deletion-robust and worst-case, are considered. Particularly, we derive tight ranges of the robust parameter d or budget k allowing the (1+1)-EA to find an optimal solution in polynomial running time, which disclose the potential of EAs for robust optimization. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03043975
Volume :
843
Database :
Academic Search Index
Journal :
Theoretical Computer Science
Publication Type :
Academic Journal
Accession number :
146359867
Full Text :
https://doi.org/10.1016/j.tcs.2020.07.001